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Compilers of annual calendrical–cum-astronomical almanacs (Pa–cāgas) depend on traditional
astronomical tables called differently as sāriī, padakas, vākyas and kohakas. There are a large number
of such tables belonging to different schools (pakas) like Saura, Ārya, Brāhma and Gaeśa. Among the
Saurapaka tables Makaranda sāriī (MKS) is the prominent and the most popular one. It is composed,
by Makaranda, son of Ānanda at Kāśī (Vāraāsī, Benares) in 1478 AD. In the present paper we discuss
some features of not only the Makaranda Sāriī but also of the lesser and locally used Tyāgarti manuscript
and the Pratibhāgī padakas, all belonging to the Saurapaka. A comparison of parameters in these tables
among themselves as also with those of another paka is attempted. Procedures for eclipses and lunar
parallax are essayed with examples.
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1. INTRODUCTION

The Makaranda sāriī (MKS) is a popular
Sanskrit text containing a large number of
calendrical and astronomical tables based on the
popular siddhāntic treatise Sūryasiddhānta (SS).
These tables are worked out with immense effort
by Makaranda, son of Ānanda at Kāśī. At the
commencement of the text this fact is mentioned
following the author’s salutations to lord Gaeśa
and goddess Sarsvati, the deities of learning and
knowledge1:

śrī gaeśāyanama śrī
sarasvatyainama|

atha makaranda sāriī likhyate ||

śrī sūryasiddhāntamatena samyag
viśvopakārāya guruprasādāt |

tithyādi patra vitanotikāśyāmānan-
dakando makaranda nāmā ||

– MKS, Śl.1

“Prostrations to Śrī Gaeśa and Śrī
Sarasvatī.

 Now Ānanda’s son by name Makaranda,
brings forth at Kāśī by the blessings of
the preceptor (guru), folios of tithi etc.,
based on the Sūryasiddhānta school of
thought, properly for the benefit of the
world”.

 The major tables in MKS are for (i) the
ending moments of tithi, and yoga, (ii) the mean
longitudes of the Sun, the Moon and the five
tārāgrahas viz, Kuja (Mars), Budha (Mercury),
Guru (Jupiter), Śukra (Venus) and Śani (Saturn),
(iii) the mandaphala (equation of the centre) of
each of the heavenly bodies, (iv) the (equation of
the conjunction) of the five planets, (v) the
moments of solar ingress (sakarmaa ) into the
rāśis (zodiacal signs) and nakatras (the twenty-
seven asterisms), (vi) the Sun’s declination
(krānti), (vii) the latitude (śara, vikepa) of the
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Moon and (viii) angular diameters (bimba) of the
Sun, the Moon and the earth’s shadow-cone
(bhūcchāyā, bhūrbhā) for computing lunar and
solar eclipses.

David Pingree has provided a detailed
description of MKS with his learned critical
comments, in his extremely useful and exhaustive
two catalogues: Sanskrit Astronomical Tables in
the United States (SATIUS)2 and Sanskrit
Astronomical Tables in England (SATE)3.

In the chapter “ Tithyādi sādhanādhikāra”
(obtaining tithi etc.), under the tithikanda, the
ending moments of tithis (one thirtieth of lunar
month) at the beginning of solar years are given
for intervals of 16 years starting with the gata
(elapsed) year of the Śālivāhana śaka 1544 (i.e.
1622-23 AD). This table is followed by the tithi
parameter for each year of the interval. Similar
pattern is followed for nakatra and yoga.

Makaranda has made quite a few
innovations in the procedures for planetary
positions and eclipses. In order to elucidate the
procedures of MKS, the famous commentator
Viśvanātha Daivaj–a composed the very useful
commentary with a large number of examples in
Śā. śaka 1540 (1618 AD). Prior to that Divākara

had composed the explanatory commentary,. In
śaka 1688 (1766 AD) Gokulanātha Daivaj–a wrote
the Upapatti (derivations and rationales) for MKS.
For further elucidation of the text Daivaj–a
Nārayaa Śarmā, published his Makaranda
prakāśa4 in śaka 1831 (1909 AD). All this shows
how popular MKS is among the Pa–cāga makers,
especially the followers of the Saurapaka.

2. OBTAINING TITHI KANDAS (TITHI

KANDA–NAYANAM)
The word kanda in Sanskrit literally means

“root” (of a tree or plant) and the word vallī means
creeper. For finding the tithi details at the
beginning of a given Śālinvāhana śaka year, MKS
gives the kanda and vallī comprising the weekday
number (vāra sakhya) and the time in daa and
palas (also called ghaī and vighaī or nāī and
vināī).

In Table 2.1 that follows, the first topmost
row contains the Śā. Śa years with an interval of
16 years, starting with 1544 (1622 A D) and
continuing with 1560, 1576, …. upto 1944 (2022
A D). Incidentally, while the text says that the
commencing year is śaka 1400 (1478 AD), the
table for tithikanda, in the published version of

Fig. 2.1: Thithikanda for śaka (16 yrs.int.) and śakāvaśea (see Tables 2.1, 2.2), a folio from MKS
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MKS, starts from 1544(1622 AD). This may be
because the published work is based on
Viśvanātha’s manuscript composed during the first
quarter of 17th century. In the second row tithi
numbers 27, 24, 21, …. are given. The third row
contains the vāra (weekday number) ghaī and
palas. The fourth and the last row has vallī
followed again by ghaī and palas.

Note: 1 ghaī = 1 nāī = 1 daa = 60 palas = 24
minutes
1 vighaī = 1 vināī = 1 pala = 24 seconds

Table 2.1: Tithikanda for śaka years (16 yrs. interval)

Śaka 1544 1560 ….. 1880 ….. 1944
Tithi 27 24 ….. 24 ….. 12
Vāra 5 4 ….. 0 ….. 4
Ghaī 26 32 36 1
Pala 45 57 57 45
Vallī 54 0 ….. 50 ….. 12
Ghaī 36 5
Pala 34 51 31 39

Table 2.2:  Śakāvaśea tithikanda

Kohaka 1 2 3 …. 11 …. 16
Tithi 11 22 3 …. 1 …. 27
Kanda 1 2 3 6 6

11 23 35 …. 8 …. 6
42 23 5 38 12

Vallī Kanda 15 30 45 47 5
12 25 37 …. 18 …. 30
36 12 48 34 17

In Table 2.2, the tithi and the
corresponding vārādikanda and vallī are given for
each year of the sixteen years interval used in Table
2.1. Śakāvaśea means the remainder when the
śaka interval is divided by 16. We have to take
note of the following points:

(i) In Table 2.1, the tithyādi for successive śaka
years with 16 years interval from the epoch is
obtained by subtracting the following tithyādi
from the preceding one:

Tithi Vāra Ghai Pala

3 0 53 48

Example 2.1

Śaka Tithi Vāra Ghai Pala
1544 27 5 26 45

Subtract 3 0 53 48
1560 24 4 32 57

Note: While adding or subtracting, a cycle of 30
tithis (one lunar month), vāra cycle of 7 weekdays,
each weekday of 60 ghaīs and each  ghaī of 60
palas are used.

(ii) The vallī under the tithyādi for any tabulated
śaka year is obtained by adding 5|30|17 (vallī,
gh., palas) to the corresponding previous entry
(of 16 years interval).

Example 2.2

Śaka Vallī Ghai Palas
1544 54 36 34
Add 5 30 17
1560 0 06 51

Note: For vallī a cycle of length 60 is used.
Therefore, if addition of corresponding vallī
exceeds 60, then the nearest multiple of 60 must
be removed.

3. OBTAINING NAKATRAKANDAS

The nakatrādi (i.e. nakatra, vāra, ghaī,
palas) for each tabulated śaka entry of 24 years
interval is obtained by adding 23 nak., 2 dina, 12
gh. 35 palas to the previous entry. Here, dina
means a day to be added to the weekday number.

Table 3.1: Nakatrakanda for śaka years (24 yrs. interval)

Śaka 1592 1616 1640 …. 1976

Nakatra 16 12 8 …. 6
Vāra 2 4 6 2
Ghaī 34 47 59 …. 56

contd...



MAKARANDA SA
–
RIN. I

–
 AND ALLIED SAURAPAKA TABLES 189

Pala 49 24 59 8
Vallī 10 19 27 24
Ghaī 40 3 25 …. 42
Pala 33 9 45 9

Table 3.2: Śakāvaśea nakatrakanda for each year of śaka
(24 yrs. interval)

Kohaka 1 2 3 …. 24
Nakatra 10 20 3 …. 23
Vāra 1 2 3 2
Ghaī 18 36 54 …. 12
Pala 3 6 10 35
Vallī 15 30 46 8
Ghaī 26 52 19 …. 22
Pala 27 54 21 36

Table 3.2 gives the nakatra and vallī for
each of the years of the twenty-four years interval
used in Table 3.1.

Example 3.1

Śaka Nak. Vāra Ghai Pala

1592 16 2 34 49
Add 23 2 12 35
1616 12 4 47 24

Note: For nakatra a cycle of 27 nakatras is used.
The zodiac of 360° is divided into 27 nakatras
of 13°20′ angular range each.

The vallī under the nakatrādi for any
tabulated śaka year is obtained by adding 8|22|36
to the corresponding vallī, gh. and palas of the
previous entry (24 years earlier).

Example 3.2

Śaka Vallī Ghai Pala
1592 10 40 33
Add 08 22 36
1616 19 03 09

4. OBTAINING YOGA–DIKANDA

The tables of yogākanda, for 24 years
interval (Table 4.1) and for each of 24 years (Table
4.2) are obtained similarly.

Table 4.1: Yogākanda for śaka years (24 yrs. Interval)

Śaka 1520 1544 1568 …. 1904
Yoga 1 24 20 …. 18
Vāra 2 5 00 3
Ghaī 59 11 24 …. 20
Pala 16 51 26 36
Vallī 45 53 2 59
Ghaī 34 56 19 …. 35
Pala 2 38 14 38

Table 4.2: Śakāvaśea yogakanda

Kohaka 1 2 3 …. 24
Yoga 10 20 3 …. 23
Vāra 1 2 3 2
Ghaī 17 35 53 …. 12
Pala 53 46 38 35
Vallī 15 30 46 8
Ghaī 26 52 18 …. 22
Pala 4 8 12 36

5. BīJAS (CORRECTIONS) TO CIVIL DAYS AND

MEAN DAILY MOTIONS

It is truly a noteworthy practice among the
ancient and medieval Indian astronomers that they
always insisted that there should be concordance
between the observed and the computed results.
They called it “dggaitaikya”. Right from the
Vāśiha siddhānta upto the remarkable Kerala
contributions of the late medieval period the
updation of parameters and procedures in classical
Indian astronomy has been strongly recommended
and periodically effected also. For example, the
famous Kerala astronomer Parameśvara, (1362-
1455 AD) insists:

kālāntare tu saskāraś cintyatā
gaakottamai |

– In course of time may corrections (in
parameters) be thought over by the best
among mathematicians.

The Vāśiha siddhānta declares:
yasmin pake yatrakāle dggaitaikya
dsyate tena pakena kuryāt tithyādi
sādhanam |

– That paka (school of thought) which
yields results (by computations) tallying
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with observations during any period, from
that paka the (calendrical and
astronomical) results like tithi etc. must
be obtained for that period.

Nīlakana Somayāji (1444–1545 AD), the
crown jewel of Kerala astronomers, in a lengthy
passage in his Jyotirmīmāmsā, admonishes a
certain commentator who laments that on account
of our ancient siddhāntas going wrong , the
observances, religious rites and their expected
merits are all going haywire:

hā dhik! sakae mahati patitā sma

– “Alas, we are befallen into a great
crisis!”.

Nīlakana further recommends5:
…pancasiddhāntāstāvat kvacitkāle
pramāameva ityavagantavyam |

… ye punaranyathā prāktana
siddhāntasya bhede sati yantrai

parīkya grahāām bhagaādi sakhyām
j–ātvā abhinava siddhānta praeya
ityarthāt |

– It must be known that the five
siddhāntas had been indeed correct
during some period… When earlier
siddhāntas despite corrections, show
discord, the revolutions etc. of the
heavenly bodies must be known based on
(actual) observations of eclipses etc. and
a new siddhānta (astronomical treatise)
must be composed!

The author of the Makaranda sāriī has
incorporated many changes to yield better results
(during his time). For example, mean motion of
the Sun is tabulated under Ravi vāikāpatram.
There are 59 columns, serially numbered from 1
to 59. Each column gives the Sun’s mean motion
for the number of days, represented at the top of
the column, multiplied by 10. For example, in the
column headed by 1 (i.e. for one day) the numbers
moving downwards, in successive sexagesimal
subunits, are 9|51|21|41|44|02|05.

Dividing this sequence by 10 we get
0|59|08|10|10|24|12|30

i.e., 0°59′08′′10′′′10iv24v12vi30vii which
corresponds to 0°.9856026705264996 (SDM)
correct to 16 decimal places.

(i) Now, the length of the (nirayaa, sidereal)
solar year apparently adopted by MKS comes
to

Solar year = 360 / SDM =
365.258750575109 days.

According to the Sūryasiddhānta,

∴ Bīja to the solar year = -3.5438235 × 10-4 Ghaī
= -0.51031 sec

(ii) A Mahāyuga (M.Y.) is defined as the period
of 43,20,000 solar years. At the revised rate
of the Sun’s mean daily motion, the number
of civil days (sāvanadinas) according to MKS
comes to

Now, according to the Sūryasiddhānta
(SS), civil days in M.Y. = 1,57,79,17,828.

Bīja in civil days in M.Y.
= 1,57,79,17,802 – 1,57,79,17,828 = -26 days.

Similarly, we can work out the bhagaas
(revolutions) of the other bodies also based on their
mean daily motions given under the respective
vāikā tables in MKS. These results are provided
in Table 5.1.

(i) In Table 5.1, under ‘Revised revns’, the
figures are given correct to 4 decimal places;

(ii) in the last column, under ‘Bīja’, the figures
are given to the nearest integer; and
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(iii) in the first column, under ‘Body’, Mandocca
refers to the Moon’s apogee.

(iv) Pingree in his SATIUS6 provides the mean
daily motions.

The extension śīgh. following Budha and
Śukra is ‘śīghrocca’ in short. This word means
the ‘apex of conjunction’ of the inferior planets,
Mercury and Venus. In classical Indian texts, while
the mean Sun is taken as the śīghrocca for the
superior planets, two different points are taken as
śīghrocca for Budha and Śukra in the epicyclic
theory. However, Nīlakaa Somayāji maintains,
in his Tantrasagraha (1500 AD) that the mean
Sun is the common śīghrocca for all the planets.
In that case, ‘anomaly of conjunction’,
śīghrakendra = (mean planet – mean Sun), the
mean planet’s elongation from the mean Sun. Of
course, some texts define śīghrakendra as
(śīghrocca – mean planet) in which case the
resulting  correction will have the opposite sign.

6. CONSTANTS FOR DETERMINING TITHIS

For determining true values of tithi,
nakatra and yoga, MKS gives separate tables for
each of them, in intervals of 6 as 0,6,12,….,48. In
the first row (kohaka) at the top of daily vallīs,
successive numbers from 0 to 59 are given.

A vallī has three numbers; the topmost one
is called mastaka (‘head number’) and the middle
one saralāka. The last number is called

adhihāka. In a vallī, subtracting the earlier
written siddhāka from the saralāka (i.e. the
middle number of the vallī), the resulting number
is the guaka (multiplier) for obtaining the tithi.
If the number below the vallī is greater than 30,
then 1 added to the saralāka is the guaka
(multiplier).

 We have, 1 solar year exceeding a lunar
year by 11ti | 1dina 11gh.41.7pa.. Therefore, 16 solar
years exceed 16 lunar years by

 16 × (11ti | 1dina 11gh.41.7pa.)

 = 176ti | 19dina 07gh.07.2pa.

 = 26ti | 5dina 07gh.07.2pa.

(from 176ti, subtracting 150 tithis, being 5
complete lunar months and removing multiples
of 7 from 19 dinas).

Example 6.1: For śaka 1891, we have from Table
2.1 of tithikanda and vallī (for the śaka years of
16 years interval):

For śaka 1880 : 24ti 0di 36gh 57pa | 50va 12gh 31pa

śea vara 11 : 1ti 6di 08gh 38pa | 47va 18gh 34pa

 ______________________________

 Adding : 25ti 6di 45gh 35pa | 37va 31gh 05pa

Since 25ti > 15ti the tithi is 25-15=10 of
the ka paka.

Table 5.1:  Bījas to revolutions of bodies

Body Mean daily motion Revised revns. SS revns. Bīja
° ′ ′′ ′′′ iv v vi vii

Candra 13 10 34 52 03 49 08 0 5,77,53,335.0879 5,77,53,336 –1
Mandocca  0 06 40 58 30 41 28 0 4,88,198.9998 4,88,203 –4
Rāhu -0 03 10 44 43 51 0 31 2,32,238.5688 2,32,238 +0.57
Kuja  0 31 26 28 11 08 56 30 22,96,831.8929 22,96,832  0
Budha śīgh.  4 05 32 21 29 09 48 30 1,79,37,075.7218 1,79,37,060 +16
Guru  0 04 59 08 48 56 31 30 3,64,212.0116 3,64,220 –8
Śukra śīgh.  1 36 07 43  01 47 58 48 70,22,363.9911 70,22,376 –12
Śani  0 02 00 23 28 54 40 42 1,46,580.0052 1,46,568 +12
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Note: In Table 6.1, the topmost row (kohaka)
consists of mastāka (vallī) successively from 0
to 59; (ii) the first column has saralāka (gh.) from
0 to 54 at intervals of 6 gh.; and (iii) corrections
to the tithis are listed in ghaīs and palas against
the mastāka and saralāka mentioned in (i) and
(ii). Here, mastāka = 37, saralāka =31 and adhihāka
= 5.

Now, the saralāka lies between the
sthirākas (constants) 30 and 36. From Table 6.1
(“Tithisaurabha”) in the vertical column under
mastāka 37, in the rows against saralākas 30
and 36 respectively we have 8|26 and 8|15 ghaīs.
The difference between these numbers, phalāntara
= (8|15) – (8|26) = –0|11 ghaīs. The difference
between the given saralāka 31 and the earlier
tabulated saralāka 30 is (31-30) = 1. Therefore,
proportionately, for this difference, the correction

Combining this to the phala 8|26
(corresponding to saralāka 30), we get

 spaaphala = (8|26) – (0|2) = 8|24 gh.

For the beginning of the śaka solar year 1891, we
have

Mean tithyādi: 10ti | 6di 47gh.10pa. in the ka paka.

Add  spaaphala:       8gh. 24pa.

                       ___________________

True tithyādi : 10ti | 6di 55gh.34pa.

This means that the new solar year śaka
1891 commenced (with solar ingress into
Mearāśi) on the 10th tithi (i.e. Daśamī) of the dark
fortnight, the 6th dina (Friday) at 55gh, 34 palas
(after the mean sunrise).

Note: (1) The dinas 1 to 7 (or 0) of the week
represent respectively Sunday to Saturday. Hence
dina 6 is a Friday. (2) Similarly, true nakatrādi
and yogādi can be obtained from the respective
tables.

7. PRATIBHA–GI– PADAKA–NI

The Pratibhāgī (PRB) tables12 are very
popular among the pa–cāga makers in Karnataka
and Andhra regions. Most possibly the name of
the text comes from the fact that the relevant tables
are computed for each degree (prati bhāga).

Āryabhaa I (b.476 AD) and the now
popular Sūryasiddhānta provide Rsine differences
(R = 3438') to get Rsine for every 3°45′. Some

Table 6.1: Tithisaurabha — Tithi corrections for mastākas and saralākas

0 1 … 23 … 37 … 46 … 59

0 24 27 40 09 00 22
57 50 32 22 00 04

6 25 28 40 09 00 22
15 08 21 10 00 21

… … … … … … …
… … … … … … …
30 26 29 39 08 00 23

24 16 34 26 04 30
36 26 29 39 08 00 23

42 33 22 15 05 47
… … … … … … …
… … … … … … …
54 27 30 … 38 07 … 00 … 24

33 24 … 44 42 … 08 … 39
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texts (handbooks) provide brief tables for the
manda and śīghra equations for the respective
anomalies at even higher interval (step-) lengths.
For example, Gaeśa Daivaj–a in his
Grahalāgavam (1520 AD)8 tabulates the manda
and śīghra equations of the planets at intervals of
15°. Another popular handbook,
Karaakutūhalam9 of Bhāskara II (b. 1114 AD)
gives the jyākhaas (blocks of Rsine values) for
every 10°. In such cases intermediate values are
obtained by interpolation. While generally linear
interpolation is expected to be used, it is truly
noteworthy that as early as in the seventh century
the great Indian astronomer Brahmagupta (c.628
AD) provides the ‘second order’ interpolation to
obtain more accurate values for the equations of
the centre and of ‘conjunction’ in his
Khaakhādyaka10,11.

Now, the pratibhāgī in contrast to the
siddhānta and karaa texts, provides tables for
each degree. In the photocopy with us, no mention
of either the author or of the period of the
composition is mentioned. A critical edition based
on the available manuscripts in due course might
throw light on these details. The mean positions
of the heavenly bodies have to be worked out using
the Kali ahargaa, the elapsed number of civil
days for the given date from the beginning of the
Kaliyuga (the mean midnight between 17th and
18th, February 3102 BC). Therefore the Pratibhāgī
text has no need to mention or use a later epoch.

The popularity of PRB in parts of
Karnataka and Andhra regions is very clear from
the fact that a good number of manuscripts of the
main text as also its commentaries are listed in
the Catalogue of O.R.I., Mysore.

The important tables in PRB are on (1) the
mean motions of the Sun, the Moon, apogee
(mandocca) and the ascending node (Rāhu) of the
Moon and the five planets; (2) the mandaphala
(equation of the centre) of the bodies and (3) the
śīghraphala (equation of conjunction) of each

planet; (4) the Sun’s declination (krānti) and lastly
(4) Moon’s latitude (vikepa, śara).

The tables of mean motions of the bodies
for each day from 1 to 9 days, every 10 days from
10 to 90 days, every 100 (nūru in Kannada) days
from 1 to 9 hundreds, every 1000 (sāvira in
Kannada) from 1 to 9 thousands, from 10 to 90
thousands, 1 to 9 lacs (hundred thousand, laka in
Sanskrit and Kannada ) and finally for 10 and 20
lacs (i.e. one and two million) days.

7.1 Mean motion, revolutions and sidereal periods
in PRB

From the mean motion of the Sun for two
million days given in PRB, we have 5475 Rev. 6S

25° 18' 33" 02"’ (the superscript S stands for ‘signs’
i.e. rāśis of the zodiac). This gives us the Sun’s
mean daily motion, SDM = 0°.985602617263794.
From SDM, we obtain the length of the nirayaa
(sidereal) solar year = 365.2587703139661 days
and sāvanadinas (civil days) in a Mahāyuga (of
432 × 104 years) as 1,57,79,17,888 days.

The number of civil days in a M.Y.
according to SS is 1,57,79,17,828 so that the bīja
(correction) for civil days is +60.

Remark: The present authors, in an effort to
update the pa–cāga elements, recommend
adoption of 1,57,79,07,487 as the sāvanadinas
(civil days) for a M.Y.

We list the mean daily motions, revolutions
(bhagaas) and the sidereal periods of the bodies
according to PRB in Table 7.1

Note: In Table 7.1, (i) the mean daily motions are
given correct to 15 decimal precision (on
computer), (ii) the revolutions in a Mahāyuga (of
432 × 104 solar years) are given to the nearest
integer and (iii) the sidereal periods are correct to
4 or 5 decimal places.

Remark: While the proposed number of civil days
in M.Y. is 1,57,79,07,487 (see earlier remark), the
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Table 7.1: Daily motion, revns. and sidereal periods in PRB

Body Mean daily motion Revns. in M.Y. Sid. period (days)

Moon 13°.17635250091553 577533340 27.32167
Moon’s Mandocca 0°.1113829091191292 488203 3232.0937
Rāhu 0°.0529848113656044 232238 6794.4
Kuja 0°.5240193605422974 2296832 686.9975
Buddha śīgh 4°.092318058013916 17937061 87.9697
Guru 0°.08309634029865265 364220 4332.32076
Śukra śīgh 1°.60214638710022 7022376 224.69857
Śani 0°.03343930840492249 146568 10765.7729

suggested figure for a kalpa (432×107 years), to
yield a more accurate value, is 15,77,90,74,87,027.

As mentioned in the earlier remark, the
present authors have proposed revision of
bhagaas (revolutions) in a kalpa (432×107 years),
sidereal periods of the bodies as shown in Table
7.2. in comparison with Sūryasiddhānta.

8. TYāGARTI MANUSCRIPT (TYGMS)
We procured recently a copy of a

manuscript, called Grahagaita padakāni, from
a private collection. The manuscript belongs to a
small place called Tyāgarti12 (also Tāgarti) of
Sagar taluk in Shimoga district of Karnataka. The
latitude (aka) of the place is given in terms of
akabhā (palabhā). This value coincides closely
with the known modern value of the latitude of
Tyāgarti.

TYGMS explicitly mentiones that it is
based on the Sūryasiddhānta. Even like the
Pratibhāgī, TYGMS does not need and does not
mention a contemporary epoch. Both of them need
the Kali ahargaa KA for a given date. KA
represents the number of civil days elapsed since
the beginning of the Kaliyuga viz, the mean
midnight between 17th and 18th of February 3102
BC.

This KA accumulated to more than ten
lakhs (one million) days around 365 BC. For
example, as on August 1, 2011, KA = 18,67,309,
more than 1.8 million days. Therefore both PRB
and TYGMS manuscripts provide the mean motion
tables even for a lakh, ten lakhs (a million) and a
crore (ten million) days for the sake of accuracy.
These data help us to obtain the sidereal period
and the bhagaas (revolutions in a Mahāyuga) of
a heavenly body.

Table 7.2: Proposed bhagaas in a kalpa

Body                Bhagaas (Revolutions) Sid. Period(days)
Sūryasiddhānta Proposed Proposed

Sun 4,32,00,00,000 4,32,00,00,000 365.256362738
Moon 57,75,33,36,000 57,75,29,85,910 27.32166
Moon’s Mandocca 48,82,03,000 48,81,25,074 3232.589
Rāhu 23,22,38,000 23,22,68,618 6793.46
Kuja 2,29,68,32,000 2,29,68,76,453 686.9797
Budha śīgh 17,93,70,60,000 17,93,70,33,867 87.96926
Guru 36,42,20,000 36,41,95,066 4332.589
Śukra śīgh 7,02,23,76,000 7,02,22,60,402 224.7008
Śani 14,65,68,000 14,66,56,219 10759.23
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TYGMS contains 32 folios of tables for
astronomical computations. One or two folios are
missing in between. For example, the folio for the
mean motion of Saturn (Śani madhya padakāni)
is missing in the bundle of folios.

Interestingly, the manuscript is in Nāgarī
script with numerals completely in Kannada script.
Even many Kannada words, by the way of
instructions or descriptions, are in the Nāgarī
script. Folio 31 (back) mentions “akaliptā
842|17” i.e. the latitude in arcminutes is 842|17.
This means the local latitude φ = 842′17′′ =
14°02′17′′. Further, folio 32 mentions “lakodaya
viuvacchāyā gula 3”. This means that the
equinoctial shadow (called akabhā or palabhā)
is 3 agulas (with the gnomon of length 12
agulas). This gives:

Latitude, 

Folio 11 (front) mentions “kalivara
4813”. Now, kali year 4813 corresponds to 1712
AD. In the same folio the mandoccas (apogees)
and the pātas (nodes) of the planets are given.

Although for obtaining the mean positions
contemporary epoch is not needed, the author of
TYGMS perhaps desired updation of the apogee
and nodes of the planets. However, the rates of
motion of these special points as given in the
Sūryasiddhānta are unrealistic from the point of
view of our modern known results.

In addition to giving the Kali year as 4813
(1712 AD), TYGMS mentions the nirayaa mean
position of the Sun as 11Ra 10° 08' 03" which gives
the date as March 22 of the year 1712 AD with
Ayanāmśa (amount of equinoctial precession) as
about 18°. From this data the TYGMS can be dated
as March 22, 1712 C.E., three centuries old.

8.1 Solar year, civil days, revolutions etc. in
TYGMS

TYGMS gives the Sun’s mean motion for
1 crore (107) days as 10Ra 06° 33' 20" (along with
27377 revolutions as can be calculated). From this
we get (i) Sun’s mean daily motion, SDM =
0°.9852676868.Therefore, in a Mahāyuga of
43,20,000 solar years, the number of civil days
(sāvanadinas):

The corresponding value according to SS
is 1,57,79,17,828. Therefore, Bīja (correction) of
civil days is –36 and

(ii) the length of the nirayaa solar year = 360°/
SDM = 365.2587563 days.

Based on the mean motions of the bodies
for ten million days in TYGMS, we have worked
out bhagaas (revolutions) and hence the Bījas
as shown in Table 8.1

Table 8.1: Mean daily motions, revns. and bījas in TYGMS

Body             Mean motion for 1 crore days               Revolutions. in M.Y. Bījas

Revn. Ra D M S TYGMS SS

Moon 366009 09 11 27 08 5,77,53,332 5,77,53,336 –4
Moon’s Mandocca 3093 11 19 06 20 4,88,202 4,88,203 –1
Rāhu 1471 09 18 08 0 2,32,237 2,32,238 –1
Kuja 14556 01 03 46 40 22,96,832 22,96,832 0
Budha śīgh 113675 06 0 26 30 1,79,37,059 1,79,37,060 –1
Guru 2308 02 23 25 20 3,64,219 3,64,220 –1
Śukra śīgh 44504 0 23 56 0 70,22,375 70,22,376 –1
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Note: In Table 8.1, (i) the mean motions are given
for one crore (10 million) days in terms of
revolutions, rāśis (signs), degrees (amśa),
minutes(kalās) and seconds (vikalās), (ii)
revolutions in a Mahāyuga are to the nearest
integer, (iii) the last column gives the bījas
(correction) to the revolutions given in the
Sūryasiddhānta and (iv) details of Śani do not
appear in the table since the related folio is missing
in TYGMS.

9. MANDAPHALAS AND SƒI–GHRAPHALAS

IN PRB, TYGMS AND MKS
In finding the true longitudes of the Sun

and the Moon we need apply only the major
correction, mandaphala (equation of the centre).
But, in the case of the five planets, besides the
mandaphala, the other major equation to be
applied is śīghraphala.

9.1 Mandaphala in the saura tables

The mandaphala (equation of the centre)
of a heavenly body is given by the classical
expression:

where MP is the required mandaphala, MK is the
mandakendra (anomaly from the apogee), p is the
manda paridhi, the periphery of the related
epicycle, R=360°, the periphery of the deferent
circle. The mandakendra MK is defined as

MK = (Mandocca – Mean planet) where
mandocca is the mean apogee.

Āryabhaa I (b. 476 AD) takes the
peripheries of the Sun and Moon as constants at
13°.5 and 31°.5 respectively and those for the five
planets are variable ones. On the otherhand, the
Sūryasiddhānta and the tables under consideration
here adopt variable peripheries for all the seven
bodies. Table 9.1 lists the limits of these paridhis
(peripheries) according to SS.

The manda paridhi is maximum at the end
of an even quadrant (i.e. for MK = 0°, 180°) and
minimum at the end of an odd quadrant (i.e. for
MK = 90°, 270°).

If the peripheries at the ends of even and
odd quadrants are denoted respectively by pe and
po, then the variable periphery for mandakendra
MK is given by

p = pe – (pe – po) × | sin(MK)| …(9.2)

where | sin(MK)| means the numerical or absolute
value of sin(MK).

Thus, according to SS, the mandaphala MP
is given by (9.1) using (9.2). The values of MP of
the Sun as per the three tables, for MK at intervals
of 10°, are compared with the actual ones, obtained
from (9.1) and (9.2) in Table 9.2.

In Table 9.2, we have compared the
mandaphala values for the Sun whose
mandaparidhi varies from 13°40' to 14°. For MK
= 90°, MP = 130' 31" = 2°10' 31" according to
TYGMS. We notice that all the three tables for the
Sun give MP in kalās and vikalas (arcminutes,
arcseconds). The values differ by a maximum of
5 arcseconds.

According to the Indian classical texts, the
greatest MP, among the seven heavenly bodies, is
for Kuja (Mars) whose mandaparidhi varies from
72° to 75°. For MK = 90°, the mandaparidhi,

Table 9.1: Manda paridhis according to SS

Body                                   Manda Paridhi

(MK = 0°, 180°) (MK=90°, 270°)

Sun 14° 13°40'
Moon 32° 31°40'
Kuja 75° 72°
Budha 30° 28°
Guru 33° 32°
Śukra 12° 11°
Śani 49° 48°
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Table 9.2: Mandaphala of the Sun

MK           Mandaphala (Equation of the centre)

TYGMS PRB MAKARANDA Formula (9.1)

ka vik ka vik ka vik ka vik

10° 23 07 23 07 23 07 23 07
20° 45 19 45 19 45 22 45 21
30° 66 03 66 03 66 02 66 03
40° 84 36 84 35 84 42 84 37
50° 100 31 100 33 100 36 100 33
60° 113 25 113 21 113 25 113 24
70° 122 47 122 47 122 51 122 50
80° 128 31 128 32 128 35 128 36
90° 130 31 130 31 130 32 130 31

p = po = 72° so that the corresponding mandaphala
MP = 72°/2π = 11°27′33′′ = 687′33′′. To examine
how the mandaphala values for a planet according
to the saurapaka tables under consideration
compare with one another these are shown in Table
9.3.

We notice in Table 9.3 that (i) MKS and
TYGMS give the mandaphala of Kuja only in
kalās, to the nearest arcminute while PBR provides
the same both in kalās and vikalās. In fact this is
the case with other four planets also.

Note: According to MKS, the mandaphalas of the
five planets differ from those of the other texts.

For example, for MK=40°in Table 9.3 the
mandaphala values according to TYGMS and MKS
are respectively 449 and 414 kalās. The main
reason for this is that, in SS the true position of a
star planet is obtained by applying successively
four corrections. Among these the manda
correction is applied twice in between the two
śīghra corrections. On the other hand, MKS
simplifies the procedure by reducing only to three
corrections. Here the manda samskāra is applied
only once between the two śīghra samskāras. In
the process Makaranda has consolidated the two
manda corrections of SS into a single equation in
MKS16. This makes the mandaphala value of MKS
differ from those of SS and the other related tables.

Table 9.3: Mandaphala of Kuja

MK                Mandaphala (Equation of centre)

TYGMS                           PRB MAKARANDA                       Formula (9.1)

kalās kalās vik kalās kalās vik

10° 123 123 31 111 123 31
20° 242 241 31 219 241 48
30° 352 351 31 320 351 32
40° 449 449 23 414 449 48
50° 534 533 47 498 533 58
60° 602 601 57 570 601 49
70° 651 651 15 627 651 36
80° 681 681 29 667 681 59
90° 692 692 03 689 692 13
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In Fig. 9.1, the variation of the
mandaphala (MP) with the mandakendra (MK,
the anomaly from the apogee) is shown graphically
for the five planets. The behaviour of the graphs
is sinusoidal with MP = 0° for MK = 0°, 180° and
reaching the maximum at MK = 90°

9.2 Sƒīghraphala in PRB, TYGMS and MKS

As pointed out earlier, in obtaining the true
planets we apply two major equations which are
referred to as the manda-samskāra and the śīghra-
samskāra. While the former corresponds to the
equation of the centre, the latter to the
transformation from the heliocentric to the
geocentric frame of reference for the five
tārāgrahas (star-planets).

The classical procedure for śīghraphala is
based on the expression:

…(9.3)

where SP is the required śīghraphala, p is the
śīghraparidhi, the periphery of the śīghra
epicycle, R = 3438' and SKR is the śīghrakara,
the śīghra hypotenuse given by

…(9.4)

Let  then

…(9.5)

…(9.6)

…(9.7)

The śīghrakara SKR is given by

using (9.5)
and (9.7)

…(9.8)

Substituting (9.8) in (9.3), we get

…(9.9)

so that the śīghraphala,

…(9.10)

Example 9.1: Find the śīghra correction for Śani
(Saturn) given the following:

Śani’s śīghrakendra, SK = 62°.0406 and
Śani’s corrected śīghraparidhi, p = 39°.88328

We have

(i) 

Fig. 9.1: Variation of MP of the planets against MK.
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(ii) 

(iii) 

(iv) 

(v) 

 = 5°18′53′′.

The śīghraphala is additive or subtractive
according as the śīghrakendra SK is less than or
greater than 180°.

In the above example, since SK = 62°.0406
< 180°, SP > 0 i.e. SP = +5°18’53".

It should be noted that in the case of the
śīghra correction also, as for the mandaphala, the
śīghraparidhi (periphery) p is a variable given by

…(9.11)

The peripheries p, for different planets, at
the ends of even and odd quadrants according to
the Sūryasiddhānta are given in Table 9.4

The śīghraparidhis for Kuja, Budha and
Śukra are greater at the end of the even quadrents
(SK = 0°, 180°) than at the odd quadrants (SK =
90°, 270°). But it is the other way for Guru and
Śani.

A sample folio from PRB, displaying
Śani’s śīghraphalas for SK = 36° to 84° is shown
in Fig. 9.2. The numerals are in Kannada script.
From this folio of PRB an extract of the
śīghraphala values for SK = 42° to 44° are
reproduced in Table 9.5.

Among the five tārāgrahas, Śukra (Venus)
has the maximum śīghraparidhi and hence we
choose to tabulate its values according to the

Table 9.4: Śīghraparidhi of planets

Planet                                  Śīghraparidhi

SK = 0°, 180° SK = 90°, 270°

Kuja 235° 232°
Budha 133° 132°
Guru 70° 72°
Śukra 262° 260°
Śani 39° 40°

Fig. 9.2: śīghrapadaka of Śani, a folio from Pratibhāgī ms
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different sāriīs and padakas, at intervals of 15°
for SK = 0° to 180° in Table 9.6

In Table 9.6 the Śīghraphalas of Śukra
according to the three astronomical tables, MKS,
PRB and TYGMS are compared with the
corresponding values according to the popular
Karaa text Grahalāghavam (GL)5 and those
obtained from formula (9.10)

The three texts of tables are all based on
the Sūryasiddhānta and hence their śīghraphala
results are close to those obtained from formula
9.10 based to SS.

In the first column the śīghrakendra (SK),
the ‘anomaly of conjunction’ is taken from 0° to
180° at intervals of 15°. GL has given the
śīghrankas for every 15° of SK. To get the actual

śīghraphala in degrees, we have to divide the
śīghrāka (col.2) by 10. For example, the  for
śīghrāka for SK = 15° is 63. By dividing 63 by
10 we get 6.3 i.e. 6°18' as shown in col. 3. Thus,
the  śīghrāka in col. 2 are divided by 10 and
expressed as degrees and arcminutes (aśa and
kalā) in col. 3.

While MKS gives the śīghraphala values
in degrees and minutes (col. 4), PBR gives them
in kalās and vikalās (col. 5) and TYGMS only in
kalās (col. 6). However, for the sake of immediate
comparison the values from all the five sources
are expressed in degrees etc. We notice that the
three texts of sāriīs (or padakas) are loyal to the
basic text SS on which these are based, and their
śīghraphala values are much closer to the formula-
based last column. But, Grahalāghavam, on which
the Gaeśapaka is based has different set of
parameters and completely dispenses with the all
important trigonometric ratio sine by adopting a
very good algebraic approximation.

A folio from TYGMS giving Śukra’s
śīghraphala (from Karka) is shown in Fig 9.3.

Table 9.5: A sample of śīghraphalas of Śani according to
PRB

SK Śīghraphala Difference

42° 233' 44'’ + 04' 49'’
43° 238' 33'’ + 04' 49'’
44° 243' 22'’ + 04' 49'’

Table 9.6: Śīghraphala of Śukra

SK                      Grahalāghavam MKS PBR TYGMS Formula

Śīghrāka śī. phala (9.10)

0° 0° 0° 0° 0° 0° 0°
15° 63 6°18' 6°18' 6°18’17" 6°18' 6°18’16"
30° 126 12°36' 12°33' 12°32’19" 12°33' 12°33’14"
45° 186 18°36' 18°43' 18°42’21" 18°42' 18°42’13"
60° 246 24°36' 24°44' 24°43’32" 24°44' 24°41’47"
75° 302 30°12' 30°28' 30°27’32" 30°28' 30°27’01"
90° 354 35°24' 35°52' 35°51’32" 35°52' 35°50’16"
105° 402 40°12' 40°39' 40°39’06" 40°39' 40°38’19"
120° 440 44°0' 44°27' 44°27’30" 44°28' 44°26’16"
135° 461 46°6' 46°23' 46°23’05" 46°23' 46°21’23"
150° 443 44°18' 44°16' 44°16’37" 44°17' 44°14’56"
165° 326 32°36' 32°12' 32°14’13" 32°14' 32°12’36"
180° 0 0° 0° 0° 0° 0°
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Fig. 9.3: Śukra’s (Karkādi) śīghraphala, a folio from TYGMS

Table 9.7: A sample of śīghraphalas of Śukra (Karkādi)
according to TYGMS

SK Śīghraphala Difference

80° 2348' - 19'
81° 2329' - 18'
82° 2311' - 20'

9.3 Maximum śīghraphala and critical
śīghrakendra

The mandaphala of a body attains its
maximum for the argument, mandakendra = 90°
as can be seen from equation (9.1)

However, surprisingly MKS differs from
the other two texts and also from the basic source
SS in as far as the mandaphalas of the planets
attain their maxima not at MK = 90° but over a
range beyond 90°. However, for the Sun and the
Moon, MKS is in line with PRB and TYGMS .

The behaviour of the śīghraphala (SP)
variation is truly interesting. Here also the sine
term of the argument occurs, even as in the case
of the mandaphala, as a factor in the numerator.
But, unlike the other case, the expression has sine
and cosine terms, under square-root in the
denominator. This structure of the expression for
SP causes it to have different critical values for
the śīghrakendra (SK). Of course the maximal
values of SP are different for the different planets
though these bodies share the common ground

value 0 at SK = 0° and 180° i.e. when a mean
planet is in conjunction or opposition with the
mean Sun. Table 9.6 gives the critical values of
SK and the corresponding maximal śīghraphalas
for the different planets.

Table 9.6: Maximum śīghraphala and critical SK

Planet Critical SK Maximum SP

Kuja 130°.8 40°16′26′′
Budha 111°.7 21°31′19′′
Guru 101°.2 11°31′50′′
Śukra 136°.7 46°22′55′′
Śani 96°.2 06°22′42′′

Since the classical tables give SP for each
degree, we can trace the critical SK to the nearest
degree and the corresponding SP. These results
are shown in Table 9.7

(i) From Table 9.7 we observe that PRB
tables for SP is unique among the three texts in
giving the SP of each planet in vikalās
(arcseconds) also. While MKS lists the SP in
degrees and arcminutes (aśa and kalā), TYGMS
provides the values only in kalās and PRB gives
in kalās and vikalās. In Table 9.7 we have
expressed the values of SP in degrees etc. for easy
comparison. (ii) Since MKS does not give SP in
vikalās, the critical SK values are shown to lie
within a range of 2° to even 5° (as for Śani).
However, in the case of TYGMS, though here also
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vikalās are not given for SP, it is possible to locate
the critical SK correct to a degree for each planet.
But in the case of Śukra, the critical SK lies
between 135° and 138° since the corresponding
SP is given the same, 46°23' ( = 2783 kalās). (iii)
Unlike MKS and PRB, the Tyagarti ms. lists the
SP against SK in two parts: 0° to 90° Mgādi (from
the beginning of Capricorn) and 0° to 90° Karkādi
(from the beginning of Cancer). Because of this
arrangement, if we need SP for SK > 90° (< 180°),
say of the form 90° + θ (where θ is acute), then to
get the related SP we have to look for the same in
the second part (Karkādi) tables against the
argument (90° – θ).

Thus, for example, in the tables of
śīghraphala for Śani, to get SP for SK = 98° = 90°
+ 8° (i.e. θ = 8°) we have to look for the argument

90° – θ i.e. 90° – 8° = 72° in the second part of the
śīghra tables.

In Fig. 9.4, the variation of śīghraphala
(SP) the with the śīghra anomaly (SK) is shown
graphically for the five planets. The graphs, with
SP = 0° for SK = 0° and 180°, reach the maxima
not at SK = 90° but at different critical points for
different planets as given in Table 9.6. Both SK
and SP are in degrees.

10. ECLIPSE COMPUTATIONS

An important phenomenon to which two
separate chapters are devoted in the siddhantic
texts is eclipse (grahaa, uparāga). In fact, the
benchmark for the validation of the parameters
and procedures was the observation of lunar and

Table 9.7: Maximum SP in Sāriīs

Planet Makaranda Sāriī Pratibhāgī ms. Tyāgarti ms.

Cr. SK Max. SP Cr. SK Max. SP Cr. SK Max. SP

Kuja 130°–132° 40°16' 131° 40°17'13" 131° 40°17'
Budha 109°–113° 21°31' 112° 21°32'14" 112° 21°31'
Guru 100°–103° 11°31' 101° 11°31'36" 101° 11°32'
Śukra 136°–138° 46°24' 135° 46°23'05" 135°–138° 46°23'
Śani 94°–99° 6°22' 98° 6°22'42" 97° 6°23'

Fig. 9.4: Variation of SP with SK for planets
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solar eclipses and planetary conjunctions,
especially the lunar occultations of stars and
planets.11,12 Nīlakaa Somayāji (1500 AD)
rightly remarks how his paramaguru (grand-
preceptor) Parameśvara composed his text Sama-
dggaita based on fifty-five years’ astute
observation of eclipses and planetary conjunctions
(nirīkya grahaa grahayogādiu).

Viśvanātha Daivaj–a in his Udāharaa1

commentary on MKS provides an example each
for lunar and solar eclipses.

Example 10.1: Lunar eclipse of Śaka 1534, lunar
month Vaiśākha śuddha (bright fortnight) 15
(fullmoon day, paurimā) 54 | 40 gh. Anurādhā
nakatra with gataiyayoga (sum of the elapsed
and to be covered durations) 58 | 36 gh. The given
traditional date corresponds to May 15, 1612 AD.
The instant of fullmoon is taken approximately as
54 | 40 gh.

Viśvanātha gives the longitudes of the Sun,
Moon and Rāhu (Moon’s node) as follows:

Sun: 1R 06°30'37", Moon: 7R06°34'35" and Rāhu:
1R14°18'11".

10.1 Angular diameters of the Moon and the
earth’s shadow cone

Interestingly, MKS gives the angular
diameters (bimba) of the Moon and the earth’s
shadow cone (bhūccāyā, bhūbhā) as determined
by the total duration of the running nakatra (of
the Moon). The image of the related folio is in
Fig.10.1.

An eatract of Fig. 10.1 is given in Table
10.1.

Note : In Table 10.1 the word “pāta” refers to the
shadow and not the Moon’s node.

1  Agula (Ag.) = 60 pratyagula (pra.)

Fig.10.1: Tables of bimbas and dhanu, folio from Makaranda sāriī

Table 10.1: Candra bimba and Bhūcchāyā bimba

Duration of 56 57 58 59 60 61 62 63 64 65 66
nakatra in Ghaī

Candra Ag 11 11 11 10 10 10 10 10 10 09 09
bimba pra. 34 22 10 59 48 37 27 17 07 58 48
Pāta Ag 29 28 28 27 27 26 25 25 24 24 24
bimba pra. 34 54 16 38 02 27 53 20 49 48 48
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For the given example 10.1 we have to find
the angular diameters of the Moon and the earth’s
shadow cone using Table10.1. The duration of the
running Anurādhā nakatra is given as 58 | 36 gh.
This value lies between 58 and 59 ghaīs for which
the corresponding values of the Moon’s angular
diameters are respectively 11 | 10 and 10 | 59
agulas. Now, by the rule of three (trairāśi,
anupāta) we obtain the Moon’s angular diameter
as 11 | 3.4 agulas.

Similarly the diameter of the shadow cone
(bhūccāyā bimba) is calculated. In the above Table
10.1, under 58 and 59 ghaīs against pāta bimba,
we have 28 | 16 and 27 | 38 agulas. Therefore,
for the argument 58 | 36 gh. in between,
proportionately we get 27 |53.2 agulas as the
mean diameter of the earth’s shadow. This needs
to be corrected to get the true (spaa) diameter.

In the same folio of MKS, corrections to
the mean diameter of the shadow cone are given
(in agulas and pratyagulas) for the Sun’s
ingressions to different rāśis (Mea etc). In the
example under consideration, the true nirayaa
Sun is 1R 06°30'37" i.e. Vabha rāśi 06°30'37".
Now, under Vabha the correction given is 0 | 31
ag. and that under the next rāśi Mithuna is 0 | 37
ag. The difference between them is + 0 | 06  ag.
Therefore, for the balance 06°30'37" we get

Adding this to the value 0 | 31 ag. corresponding
to the beginning of Vabha, we get the correction
= 0 | 31 + 0 | 1.3 = 0 | 32.3 ag. Adding this
correction to the mean diameter 27 | 53.2 ag.
obtained earlier, we get the true diameter:

spaābhūbhā = 27 | 53.2 + 0|32.3 = 28 | 25.5 ≈ 28
| 26 agulas.

Already we have the Moon’s diameter,
Candrabimba = 11| 3.4 ag. The sum of the semi-
diameters of the Moon and the shadow cone,

(ii) Moon’s latitude (Candra śara)

Moon’s nodal distance, Virāhucandra,

VRCH = Moon’s longitude – Rāhu’s longitude
= 7R06°34' 35" – 1R14°18'11"
= 5R22°16' 24" = 172°16' 24".

Bhuja of VRCH = 180°–172°16'24" =
7°43'36". Now the table for the Moon’s śara in
MKS gives the latitude for the values of the
argument (bhuja of VRCH) from 1° to 90°. From
Table 10.2, under the argument values 7° and 8°,
we have śara given respectively as 32 | 52 and
37 | 32 in kalās (arcminutes) with a difference of
4 | 40 kalās (Table 10.2). By proportions, for the
balance of 43'36" between 7° and 8° we get the
increment in śara as 3 | 23.4 kalās. Adding this
increment to the śara 32 | 52 kalās (for 7°), we
get

Candra śara = 32 | 52 + 3|23.4 = 36 |15.4 kalās
≈ 12 | 5.1 ag.

Note : Śara is positive or negative according as
VRCH is less or greater than 180°.

Table 10.2: A sample of Chandra śara in MKS
VRCH śara
1° 4' 43''
2° 9' 25''
….. ……
7° 32' 52''
8° 37' 32'’
….. …..
90° 270' 0''

(iii) Grāsa and sthiti
By definition, grāsa = Manaikya khaa

– | śara |
noting that if śara is negative, then its numerical
value is considered.
In the example, grāsa = 19 | 45 – 12 | 5.1 ≈ 7 | 40
ag.

MKS gives the following Table10.3 for
sthiti (half-interval) as a function of grāsa (amount
of obscurity):
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In the example under consideration, grāsa
= 7 | 40 ag. In Table 10.3 for half- duration (sthiti),
we find that below the entries 7 and 8 agulas of
grāsa we have the corresponding sthiti values
respectively as 3 | 35 gh. and 3 |46 gh., the
difference between them being 0 | 11gh. For 1 ag.
of grāsa. Therefore, for the balance of 0 |40 ag.,
the corresponding increment in sthiti is 0 |07 gh.
Adding this to 3 |35 gh., we get sthiti = 3 | 35 +
0 |07 = 3 |42 gh.

Commentator Viśvanātha stops the
example at this stage recommending the further
procedure to be continued as per the relevant
karaa (handbook). However, respectively
subtracting sthiti from and adding the same to the
instant of the fullmoon we get the sparśa
(beginning) and the moka (end) of the lunar
eclipse. Thus we have:

Sparśakāla: 54 | 40 – 03 | 42 = 50 | 58 gh. and
Mokakāla = 54 |40 + 03|42 = 58|22 gh.

Remark: Computations of eclipse according to
the Improved Siddhāntic Procedure (ISP)14,15,
developed by the present authors, give the
following circumstances:

Moon’s diameter = 31'.72 = 10.573 ag. and
shadow’s diameter = 86'.756 = 28.9187 ag.
Moon’s latitude (śara) = +0°38'.72.

Summary of the eclipse
Beginning (sparśa): 1h 50m a.m. (IST)
Middle (madhya): 3h 15m a.m. (IST)
End (moka): 4h 40m a.m. (IST)
Half-duration: 1h 25m (correct to a minute).

According to Viśvanāthā’s udāharaa on
MKS, the half-duration (sthiti) is 3 | 42 gh.

i.e. 1h 28m48s. There is a difference of 3m48s in the
half duration. This is due to the approximate values
taken in the traditional tables for the related
parameters.

Example 10.2: We now consider the example for
a solar eclipse given by Viśvanātha in his
udāharaa commentary on MKS: Śaka 1532, lunar
month Mārgasīra ka (dark fortnight) 30,
Wednesday, 11 | 59 gh. This traditional date
corresponds to December 15, 1610 AD
(Gregorian). The parameters of the participating
bodies at the instant of the new moon are as
follows:

True nirayaa Sun, S = 8R05°26'20"

Lagna (ascendant), L = 11R02°05'34"

(i) Sūryabimba: From the related table Viśvanātha
obtains the Sun’s angular diameter,

Sūryabimba = 11 | 24  agulas.

(ii) Lambana: Subtracting 3 rāśis (tribhā) from
Lagna, we get:

Tribhonalagna: 8R02°05'34" ≡ TBL

From the table for lambana (the longitude
component of the lunar parallax), Viśvanātha’s
obtains lambana = 0 | 14 gh. corresponding to
S – TBL = 3°20′46′′.

(iii) Krānti (declination)

Next, the krānti of the Sun is determined.
For the given year, śaka 1532 (1610 AD) the

Table 10.3: Sthiti (Half-duration) for lunar eclipse

Grāsa (ag.) 1 2 3 4 5 6 7 8 9 10 11
Sthiti Gh. 1 2 2 2 3 3 3 3 3 4 4

 Pa. 29 4 30 50 7 22 35 46 56 4 11
Grāsa (ag.) 12 13 14 15 16 17 18 19 20 21 22
Sthiti Gh. 4 4 4 4 4 4 4 4 4 4 4

Pa. 18 23 28 31 34 36 37 37 38 38 39
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accumulated amount of precession, ayanāmśa =
16°39'54". Adding this to the (sidereal) Sun we
get the sāyana (tropical) Sun. Thus, we have

Sāyana Sun = 8R05°26'20" + 16°39'54" =
8R22°06'14".

Bhujāmśa of sāyana Sun = 8R22°06'14" – 6R =
82°06'14".

Dividing the bhujāmśa by 6, the quotient
is 13 and the remainder 4°06'14". Now, from the
table for krānti (declination), under entries 13 and
14 in the top row against the kohaka readings
are respectively 3 | 54 | 26 and 3 | 58 | 36 in ghaīs.
Now, by the rule of proportions, the krānti for the
above obtained bhujāmśa of the sāyana Sun comes
out as 3 | 57 | 20 gh. Multiplying this result by 6,
we get krānti degrees (bhāgā) as 23°44'. Since
sāyana Sun > 6 rāśis, declination δ is negative
i.e. δ = – 23°44'. Note that classical Indian
astronomers always took the Sun’s maximum
declination as 24°.

A folio from TYGMS giving Sun’s krānti
is shown in fig. 10.2.

According to Table 10.4, δ = 1002' 22''.
Putting λ = 45° and taking ε = 24° (the traditional
value) in the expression

δ = sin-1(sinε sinλ)

we get δ = 1002' 52'' 55'''.02. We see that the value
of δ by TYGMS is close to the actual value with in
an error of 30''.

Remark: We have the expression for the
declination δ of the Sun:

sinδ = sinε sinλ

Now, taking ε = 24° and the tropical longitude of
the Sun,

λ = 8R22°06'14" i.e. 262°06'14". we get δ =
-23°45'30". However, with the better value ε =
23°.5, δ = –23°15'50".

Viśvanātha determines the Sun’s krānti by
another method. Now, sāyana

Sun = 8R22°06'14". Subtracting this from one
revolution (bhagaa) i.e. 12R, we have

12R – 8R22°06'14" = 3R07°53'46" i.e. 97°53'46".
Dividing this by 6, we get the quotient (labdhi)
16 and the remainder 1°53'46". By the rule of
proportions Viśvanātha obtains the Sun’s
declination as 23°44', in its numerical value, the
same as the one obtained earlier. Further, he refines
this value to get δ = –23°44'58".

(iv) Candraśara (Moon’s latitude): We have the
bhuja of virāhucandra = 7°43'46". Although
Viśvanātha has not given explicitly Rāhu’s
longitude, he seems to have taken it as
2R13°10'06". In that case we have virāhucandra,
VRCH = 8R05°26'20" – 2R13°10'06" =
5R22°16'14". Bhuja of VRCH = 6R – 5R22°16'14"
= 7°43’46".

From the śara table, for bhuja 7°43'46",
the Moon’s latitude (śara) comes out as 36'16".
Since VRCH < 6R, the śara is positive. Dividing
this śara in kalās (arcminutes) by 3 we get śara ≈
12 | 05 agulas. Viśvanātha stops his example here

Fig. 10.2: Krānti (declination) table of the Sun, a folio from
TYGMS

Table 10.4: A sample of Sun’s krānti according to TYGMS

λλλλλ Krānti = δδδδδ Difference

45° 1002' 22''  17' 28''
50° 1088' 7''  16' 13''
55° 1199' 46''  15' 13''
60° 1237' 35''  12' 19''

Example: Suppose Sun’s tropical longitude λ =
45°.
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and expects the readers to continue working as
per the of the

Remark: It is interesting that Viśvanātha
Daivaj–a works out the same example in his
udāharaa commentary on Gaeśa Daivaj–a
Grahalāghavam (epoch: March 19, 1520 AD). We
summarize the result for comparison. For the given
date, cakra = 8, varagaa = 90 and ahargaa =
1005. Here cakra is a cycle of 4016 days, close to
11 sidereal solar years.

At the instant of new moon i.e. at 13 | 04
gh. after sunrise, we have

True Sun = True Moon = 8R05°26'.4 and Rāhu =
2R11°41'.3;

Natāmśa = δ – ϕ = – 49°04'52" where δ =
– 23°38'10" the declination of vitribhalagna and
ϕ = 25°26'42", the latitude of Vāraāsī (Kāśī).
From this, the lambana = 0 | 11 gh. so that the
apparent conjunction of the Sun and the Moon,
spaa darśānta is at 12 | 53 gh. after sunrise. The
mean half duration (sthiti) is 2 | 44 gh. Finally, the
beginning (sparśa), the middle (madhya) and the
end (moka) timings are respectively 9 | 03 gh.,
13 | 04 gh. and 16 | 44 gh. after the local sunrise at
(Kāśī).

CONCLUSION

In the present paper we have discussed the
different aspects of Indian astronomy and
calendrical system like (i) planets’ true positions
involving manda and śīghra equations, (ii) tithi
and nakatra, (iii) eclipses involving krānti
(declination) and śara (latitude) using various
tables of the saura paka like Makaranda sāriī,
Pratibhāgī and Tyāgarti manuscripts.

These tables are based on the popular
Sanskrit treatise, Sūryasiddhānta. We find that
these tables yield close values. Interestingly MKS
simplifies the procedure for a true planet by
reducing the steps of successive corrections from
four (as in SS) to only three by composing separate

tables of mandaphala by consolidating the two
conventional ways of applying the manda equation
twice. The traditional Hindus were required to
perform their daily rituals and observances by
declaring the daily tithi and nakatra etc. This
purpose was adequately served by using the sāriī
(tables) rather than using the main metrical texts
of siddhāntas and karaas.

The very fact that the traditional priestly
class had the practice of declaring the daily
calendrical details at the time for thousands of
years implies that they had simple algorithmic
procedures without using the texts every time.
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