MAKARANDA SĀRIN̄̄ AND ALLIED SAURAPAKṢA TABLES - A STUDY

K Rupa*, Padmaja Venugopal** and S Balachandra Rao***

(Received 15 December 2012; revised 3 October 2013)

Abstract

Compilers of annual calendrical-cum-astronomical almanacs (Pañcāñgas) depend on traditional astronomical tables called differently as sārin̄ī, padakas, vākyas and kosṭhakas. There are a large number of such tables belonging to different schools (paksas) like Saura, Ārya, Brāhma and Ganeśa. Among the Saurapaksa tables Makaranda sāriṇi (MKS) is the prominent and the most popular one. It is composed, by Makaranda, son of Ānanda at Kāsī̀ (Vāraṇāsī, Benares) in 1478 AD. In the present paper we discuss some features of not only the Makaranda Sāriṇī but also of the lesser and locally used Tyāgarti manuscript and the Pratibhāgī padakas, all belonging to the Saurapaksa. A comparison of parameters in these tables among themselves as also with those of another paksa is attempted. Procedures for eclipses and lunar parallax are essayed with examples.

Key words: Makaranda sāriṇī, Padakas, Indian astronomical tables, Saurapaksa, Sūryasiddhānta, Pratibhāgī padakas, Tyāgarti.

1. Introduction

The Makaranda sārinī (MKS) is a popular Sanskrit text containing a large number of calendrical and astronomical tables based on the popular siddhāntic treatise Sūryasiddhānta (SS). These tables are worked out with immense effort by Makaranda, son of Ānanda at Kāśī. At the commencement of the text this fact is mentioned following the author's salutations to lord Ganeśa and goddess Sarsvati, the deities of learning and knowledge ${ }^{1}$:

sarasvatyainamah|
atha makaranda sāriṇī likhyate ||
śrī sūryasiddhāntamatena samyag
viśvopakārāya guruprasādāt |
tithyādi patraṃ vitanotikāšāmānan-

- MKS, Śl. 1
"Prostrations to Śrī Ganéśa and Śrī Sarasvatī.
Now Ānanda's son by name Makaranda, brings forth at Kāśí by the blessings of the preceptor (guru), folios of tithi etc., based on the Süryasiddhānta school of thought, properly for the benefit of the world".

The major tables in MKS are for (i) the ending moments of tithi, and yoga, (ii) the mean longitudes of the Sun, the Moon and the five tārāgrahas viz, Kuja (Mars), Budha (Mercury), Guru (Jupiter), Śukra (Venus) and Śani (Saturn), (iii) the mandaphala (equation of the centre) of each of the heavenly bodies, (iv) the (equation of the conjunction) of the five planets, (v) the moments of solar ingress (sañkarmaṇa) into the rāśis (zodiacal signs) and naksatras (the twentyseven asterisms), (vi) the Sun's declination (krānti), (vii) the latitude (sara, viksepa) of the

[^0]

Fig. 2.1: Thithikanda for śaka (16 yrs.int.) and śakāvaśeṣa (see Tables 2.1, 2.2), a folio from MKS

Moon and (viii) angular diameters (bimba) of the Sun, the Moon and the earth's shadow-cone (bhūcchāyā, bhūrbhā) for computing lunar and solar eclipses.

David Pingree has provided a detailed description of MKS with his learned critical comments, in his extremely useful and exhaustive two catalogues: Sanskrit Astronomical Tables in the United States (SATIUS) ${ }^{2}$ and Sanskrit Astronomical Tables in England (SATE) ${ }^{3}$.

In the chapter " Tithyādi sādhanādhikāra" (obtaining tithi etc.), under the tithikanda, the ending moments of tithis (one thirtieth of lunar month) at the beginning of solar years are given for intervals of 16 years starting with the gata (elapsed) year of the Śālivāhana saka 1544 (i.e. $1622-23 \mathrm{AD}$). This table is followed by the tithi parameter for each year of the interval. Similar pattern is followed for naksatra and yoga.

Makaranda has made quite a few innovations in the procedures for planetary positions and eclipses. In order to elucidate the procedures of MKS, the famous commentator Viśvanātha Daivajña composed the very useful commentary with a large number of examples in Śā. śaka 1540 (1618 AD). Prior to that Divākara
had composed the explanatory commentary,. In śaka 1688 (1766 AD) Gokulanātha Daivajña wrote the Upapatti (derivations and rationales) for MKS. For further elucidation of the text Daivajña Nārayaṇa Śarmā, published his Makaranda prakāśa ${ }^{4}$ in śaka 1831 (1909 AD). All this shows how popular MKS is among the Pañcänga makers, especially the followers of the Saurapaksa.

2. Obtaining tithi kandas (Tithi Kandānayanam)

The word kanda in Sanskrit literally means "root" (of a tree or plant) and the word vallı̄ means creeper. For finding the tithi details at the beginning of a given Śálinvāhana śaka year, MKS gives the kanda and vall $\bar{\imath}$ comprising the weekday number (vāra sañkhya) and the time in daṇ̣da and palas (also called ghattī and vighaṭ $\bar{\imath}$ or na $\bar{d} d \bar{\imath}$ and vinā $d \stackrel{\imath}{ })$.

In Table 2.1 that follows, the first topmost row contains the $S_{\bar{a}}^{a}$. Śa years with an interval of 16 years, starting with 1544 (1622 A D) and continuing with $1560,1576, \ldots$ upto 1944 (2022 A D). Incidentally, while the text says that the commencing year is saka 1400 (1478 AD), the table for tithikanda, in the published version of

MKS, starts from 1544(1622 AD). This may be because the published work is based on Viśvanātha's manuscript composed during the first quarter of $17^{\text {th }}$ century. In the second row tithi numbers $27,24,21, \ldots$ are given. The third row contains the vāra (weekday number) ghaṭ $\bar{\imath}$ and palas. The fourth and the last row has vallī followed again by ghatī and palas.

Note: 1 ghat $t \bar{\imath}=1$ n $\bar{a} d \bar{\imath}=1$ daṇ̣ $d a=60$ palas $=24$ minutes
1 vighaṭ $\bar{\imath}=1$ vina $\bar{d} \bar{\imath}=1$ pala $=24$ seconds
Table 2.1: Tithikanda for śaka years (16 yrs. interval)

Śaka	1544	1560	1880	\ldots	1944
Tithi	27	24	24	12
Vāra	5	4	0	4
Ghatı̄	26	32		36		1
Pala	45	57		57		45
Vallı̄	54	0	\ldots	50	12
Ghatı̄	36	5				
Pala	34	51		31		39

Table 2.2: Śakāvaśeṣa tithikanda

Koşthaka	1	2	3	\ldots.	11	\ldots.	16
Tithi	11	22	3	\ldots	1	\ldots.	27
Kanda	1	2	3		6		6
	11	23	35	\ldots	8	\ldots.	6
	42	23	5		38		12
Vallı̄ Kanda	15	30	45		47		5
	12	25	37	\ldots	18	\ldots.	30
	36	12	48		34		17

In Table 2.2, the tithi and the corresponding vārādikanda and vallı̄ are given for each year of the sixteen years interval used in Table 2.1. Śakāvaśeṣa means the remainder when the śaka interval is divided by 16. We have to take note of the following points:
(i) In Table 2.1, the tithyādi for successive śaka years with 16 years interval from the epoch is obtained by subtracting the following tithyādi from the preceding one:

Tithi	Vāra	Ghaṭi	Pala
3	0	53	48

Example 2.1

Śaka	Tithi	Vāra	Ghaṭi	Pala
1544	27	5	26	45
Subtract	3	0	53	48
1560	24	4	32	57

Note: While adding or subtracting, a cycle of 30 tithis (one lunar month), vāra cycle of 7 weekdays, each weekday of 60 ghatīs and each ghaṭī of 60 palas are used.
(ii) The vallī under the tithyādi for any tabulated śaka year is obtained by adding $5|30| 17$ (vallī, gh., palas) to the corresponding previous entry (of 16 years interval).
Example 2.2

Śaka	Vallı̄	Ghaṭi	Palas
1544	54	36	34
Add	5	30	17
1560	0	06	51

Note: For vall $\bar{\imath}$ a cycle of length 60 is used. Therefore, if addition of corresponding vall $\bar{\imath}$ exceeds 60 , then the nearest multiple of 60 must be removed.

3. Obtaining Naksatrakandas

The naksatrādi (i.e. naksatra, vāra, ghaṭ̂, palas) for each tabulated saka entry of 24 years interval is obtained by adding 23 nak., 2 dina, 12 gh. 35 palas to the previous entry. Here, dina means a day to be added to the weekday number.

Table 3.1: Naksatrakanda for śaka years (24 yrs. interval)

Śaka	1592	1616	1640	\ldots.	1976
Naksatra	16	12	8	\ldots.	6
Vāra	2	4	6		2
Ghaṭī	34	47	59	\ldots.	56

Pala	49	24	59		8
Vall $\bar{\imath}$	10	19	27		24
Ghatī	40	3	25	\ldots.	42
Pala	33	9	45		9

Table 3.2: Śakāvaśeṣa naksatrakanda for each year of śaka (24 yrs. interval)

Kostthaka	1	2	3	\ldots.	24
Naksatra	10	20	3	\ldots	23
Vāra	1	2	3		2
Ghaț̄	18	36	54	\ldots	12
Pala	3	6	10		35
Vallī	15	30	46		8
Ghatt̄	26	52	19	\ldots	22
Pala	27	54	21		36

Table 3.2 gives the naksatra and vallı̄ for each of the years of the twenty-four years interval used in Table 3.1.

Example 3.1

Śaka	Nak.	Vāra	Ghaṭi	Pala
1592	16	2	34	49
Add	23	2	12	35
1616	12	4	47	24

Note: For naksatra a cycle of 27 naksatras is used. The zodiac of 360° is divided into 27 naksatras of $13^{\circ} 20^{\prime}$ angular range each.

The vallī under the nakṣatrādi for any tabulated śaka year is obtained by adding $8|22| 36$ to the corresponding vallī, gh. and palas of the previous entry (24 years earlier).

Example 3.2

Śaka	Vall̄	Ghati	Pala
1592	10	40	33
Add	08	22	36
1616	19	03	09

4. Obtaining yogādikanda

The tables of yogākanda, for 24 years interval (Table 4.1) and for each of 24 years (Table 4.2) are obtained similarly.

Table 4.1: Yogākanda for śaka years (24 yrs. Interval)

Śaka	1520	1544	1568	\ldots	1904
Yoga	1	24	20	\ldots	18
Vāra	2	5	00		3
Ghațī	59	11	24	\ldots	20
Pala	16	51	26		36
Vallī	45	53	2		59
Ghaț̄	34	56	19	\ldots.	35
Pala	2	38	14		38

Table 4.2: Śakāvaśeṣa yogakanda

Kosṭhaka	1	2	3	\ldots.	24
Yoga	10	20	3	\ldots.	23
Vāra	1	2	3		2
Ghaț̄	17	35	53	\ldots.	12
Pala	53	46	38		35
Vallī	15	30	46		8
Ghaț̄	26	52	18	\ldots.	22
Pala	4	8	12		36

5. Bījas (corrections) to Civil Days and Mean Daily Motions

It is truly a noteworthy practice among the ancient and medieval Indian astronomers that they always insisted that there should be concordance between the observed and the computed results. They called it "drggganitaikya". Right from the Vāsisṭtha siddhānta upto the remarkable Kerala contributions of the late medieval period the updation of parameters and procedures in classical Indian astronomy has been strongly recommended and periodically effected also. For example, the famous Kerala astronomer Parameśvara, (13621455 AD) insists:

kālāntare tu saṃskāraś cintyatāṃ

 ganakottamaih |- In course of time may corrections (in parameters) be thought over by the best among mathematicians.
The Vāsíșṭha siddhānta declares:
yasmin pakse yatrakāle drggaṇitaikyaṃ drsyate tena paksena kuryāt tithyādi sādhanam |
- That paksa (school of thought) which yields results (by computations) tallying
with observations during any period, from that paksa the (calendrical and astronomical) results like tithi etc. must be obtained for that period.
Nīlakanṭha Somayāji (1444-1545 AD), the crown jewel of Kerala astronomers, in a lengthy passage in his Jyotirmīmāms \bar{a}, admonishes a certain commentator who laments that on account of our ancient siddhāntas going wrong, the observances, religious rites and their expected merits are all going haywire:
hā dhik! saṇkaṭe mahati patitāh smah
- "Alas, we are befallen into a great crisis!".

Nīlakanṭ̣a further recommends ${ }^{5}$:
...pancasiddhāntāstāvat kvacitkāle pramānameva ityavagantavyam |
... ye punaranyath \bar{a} prāktana siddhāntasya bhede sati yantraị
parīksya grahānām bhagaṇādi sañkhyām jñātvā abhinava siddhāntah praṇeya ityarthāt |

- It must be known that the five siddhāntas had been indeed correct during some period... When earlier siddhāntas despite corrections, show discord, the revolutions etc. of the heavenly bodies must be known based on (actual) observations of eclipses etc. and a new siddhānta (astronomical treatise) must be composed!
The author of the Makaranda sāriṇ̄̄ has incorporated many changes to yield better results (during his time). For example, mean motion of the Sun is tabulated under Ravi vātikāpatram. There are 59 columns, serially numbered from 1 to 59. Each column gives the Sun's mean motion for the number of days, represented at the top of the column, multiplied by 10 . For example, in the column headed by 1 (i.e. for one day) the numbers moving downwards, in successive sexagesimal subunits, are $9|51| 21|41| 44|02| 05$.

Dividing this sequence by 10 we get $0|59| 08|10| 10|24| 12 \mid 30$
i.e., $0^{\circ} 59^{\prime} 08^{\prime \prime} 10^{\prime \prime \prime} 10^{\text {iv }} 24^{\mathrm{v}} 12^{\text {vi }} 30^{\text {vii }}$ which corresponds to $0^{\circ} .9856026705264996$ (SDM) correct to 16 decimal places.
(i) Now, the length of the (nirayana, sidereal) solar year apparently adopted by MKS comes to

Solar year $=360 /$ SDM $=$ 365.258750575109 days.

According to the Sūryasiddhānta,
Solar year $=\frac{\text { Civil days in } M . Y}{\text { Sun's revns.in Mahāyuga }}=$

$$
\frac{1,57,79,17,828}{43,20,000}=365.2587564814815 \text { days. }
$$

$\therefore B \bar{\imath} j a$ to the solar year $=-3.5438235 \times 10^{-4}$ Ghaṭ $\bar{\imath}$
$=-0.51031 \mathrm{sec}$
(ii) A Mahāyuga (M.Y.) is defined as the period of $43,20,000$ solar years. At the revised rate of the Sun's mean daily motion, the number of civil days (sāvanadinas) according to MKS comes to
Civil days in M.Y. $=\frac{43,20,000 \times 360}{S D M}=$

$$
1,57,79,17,802.48447 \approx 1,57,79,17,802 \text { days }
$$

Now, according to the Sūryasiddhānta (SS), civil days in M.Y. = 1,57,79,17,828.
$B \vec{\imath} j a$ in civil days in M.Y.
$=1,57,79,17,802-1,57,79,17,828=-26$ days.
Similarly, we can work out the bhagaṇas (revolutions) of the other bodies also based on their mean daily motions given under the respective $v \bar{a} t i k \bar{a}$ tables in MKS. These results are provided in Table 5.1.
(i) In Table 5.1, under 'Revised revns', the figures are given correct to 4 decimal places;
(ii) in the last column, under ' $B \bar{\imath} j a$ ', the figures are given to the nearest integer; and

Table 5.1: Bījas to revolutions of bodies

(iii) in the first column, under 'Body', Mandocca refers to the Moon's apogee.
(iv) Pingree in his SATIUS ${ }^{6}$ provides the mean daily motions.

The extension śīgh. following Budha and Śukra is 'śl̆ghrocca' in short. This word means the 'apex of conjunction' of the inferior planets, Mercury and Venus. In classical Indian texts, while the mean Sun is taken as the síghrocca for the superior planets, two different points are taken as śīghrocca for Budha and Śukra in the epicyclic theory. However, Nīlakaṇṭ̣a Somayāji maintains, in his Tantrasanigraha (1500 AD) that the mean Sun is the common sizghrocca for all the planets. In that case, 'anomaly of conjunction', śïghrakendra $=$ (mean planet - mean Sun), the mean planet's elongation from the mean Sun. Of course, some texts define śīghrakendra as (śı̄ghrocca - mean planet) in which case the resulting correction will have the opposite sign.

6. Constants for determining tithis

For determining true values of tithi, naksatra and yoga, MKS gives separate tables for each of them, in intervals of 6 as $0,6,12, \ldots ., 48$. In the first row (koṣthaka) at the top of daily vallīs, successive numbers from 0 to 59 are given.

A vallīhas three numbers; the topmost one is called mastanika ('head number') and the middle one saralā$\dot{n} k a$. The last number is called
adhiṣthā̀ika. In a vallı̄, subtracting the earlier written siddhā$\dot{n} k a$ from the saralā$\dot{n} k a$ (i.e. the middle number of the vall $\vec{\imath}$), the resulting number is the guṇaka (multiplier) for obtaining the tithi. If the number below the vallı is greater than 30, then 1 added to the saralāñka is the guṇaka (multiplier).

We have, 1 solar year exceeding a lunar year by $11^{\text {ti }} \mid 1^{\text {dina }} 11^{\text {gh. }} 41.7^{\text {pa.. }}$. Therefore, 16 solar years exceed 16 lunar years by

$$
\begin{aligned}
& 16 \times\left(11^{\text {ti }} \mid 1^{\text {dina }} 11^{\text {gh. }} 41.7^{\text {pa. }}\right) \\
& =176^{\text {ti }} \mid 19^{\text {dina }} 07^{\text {gh. }} 07.2^{\text {pa. }} \\
& =26^{\text {ti }} \mid 5^{\text {dina }} 07^{\text {gh. }} 07.2^{\text {pa. }}
\end{aligned}
$$

(from $176^{\text {ti }}$, subtracting 150 tithis, being 5 complete lunar months and removing multiples of 7 from 19 dinas).

Example 6.1: For śaka 1891, we have from Table 2.1 of tithikanda and vallī (for the saka years of 16 years interval):

For śaka $1880: 24^{\text {ti }} 0^{\text {di }} 36^{\text {gh }} 57^{\text {pa }} \mid 50^{\text {va }} 12^{\text {gh }} 31^{\text {pa }}$
śeṣa varṣa $11: 1^{\text {ti }} 6^{\text {di }} 08^{\text {gh }} 38^{\text {pa }} \mid 47^{\mathrm{va}} 18^{\mathrm{gh}} 34^{\mathrm{pa}}$

Adding : $25^{\text {ti }} 6^{\text {di }} 45^{\text {gh }} 35^{\text {pa }} \mid 37^{\text {va }} 31^{\text {gh }} 05^{\text {pa }}$
Since $25^{\mathrm{ti}}>15^{\mathrm{ti}}$ the tithi is $25-15=10$ of the krṣna pakṣa.

Table 6.1: Tithisaurabha — Tithi corrections for mastänikas and saralän̄kas

	0	1	\ldots	23	\ldots	37	\ldots	46	\ldots	59
0	24	27		40		09		00		22
	57	50		32		22		00		04
6	25	28		40		09		00		22
	15	08		21		10		00		21
\ldots	\ldots	\ldots		\ldots		\ldots		\ldots		\ldots
\ldots	\ldots	\ldots		\ldots		\ldots		\ldots		\ldots
30	26	29		39		08		00		23
	24	16		34		26		04		30
36	26	29		39		08		00		23
	42	33		22		15		05		47
\ldots	\ldots	\ldots		\ldots		\ldots		\cdots		\cdots
\ldots	\ldots	\ldots		\ldots		\ldots		\ldots		\cdots
54	27	30	\ldots	38		07	\ldots	00	\cdots	24
	33	24	\ldots	44		42	\cdots	08	\cdots	39

Note: In Table 6.1, the topmost row (koṣthaka) consists of mastān$\dot{n} a$ (vallı$)$ successively from 0 to 59; (ii) the first column has saralānika (gh.) from 0 to 54 at intervals of 6 gh .; and (iii) corrections to the tithis are listed in ghat $\bar{i} s$ and palas against the mastänika and saralänika mentioned in (i) and (ii). Here, mastā̈nka $=37$, saralā̈nka $=31$ and adhiṣthäñka $=5$.

Now, the saralā̀nka lies between the sthirän̄kas (constants) 30 and 36. From Table 6.1 ("Tithisaurabha") in the vertical column under mastäñka 37, in the rows against saraläñkas 30 and 36 respectively we have $8 \mid 26$ and $8 \mid 15$ ghattīs. The difference between these numbers, phalāntara $=(8 \mid 15)-(8 \mid 26)=-0 \mid 11$ ghatīs. The difference between the given saralänika 31 and the earlier tabulated saralān$\dot{k} k 30$ is $(31-30)=1$. Therefore, proportionately, for this difference, the correction
$\left.=\frac{-(0 \mid 11) \times 1}{6} \approx-0 \right\rvert\, 2 \mathrm{gh}$.
Combining this to the phala $8 \mid 26$ (corresponding to saralānka 30), we get

$$
\text { spastaphala }=(8 \mid 26)-(0 \mid 2)=8 \mid 24 \mathrm{gh} .
$$

For the beginning of the śaka solar year 1891, we have

Mean tithyādi: $10^{\mathrm{t}} \mid 6^{\mathrm{di}} 47^{\text {gh. }} 10^{\mathrm{pa} .}$ in the krṣ̣a paksa. Add spasṭaphala: $\quad 8^{\text {gh. }} 24^{\text {pa. }}$

True tithyādi : $10^{\text {ti }} \mid 6^{\text {di }} 55^{\text {gh. }} 34^{\text {pa. }}$
This means that the new solar year śaka 1891 commenced (with solar ingress into Mesarāśi) on the $10^{\text {th }}$ tithi (i.e. Daśam \vec{l}) of the dark fortnight, the $6^{\text {th }}$ dina (Friday) at 55 gh , 34 palas (after the mean sunrise).
Note: (1) The dinas 1 to 7 (or 0) of the week represent respectively Sunday to Saturday. Hence dina 6 is a Friday. (2) Similarly, true naksatrādi and yogādi can be obtained from the respective tables.

7. PratibhāGī Padakāni

The Pratibhāgī (PRB) tables ${ }^{12}$ are very popular among the pañcānga makers in Karnataka and Andhra regions. Most possibly the name of the text comes from the fact that the relevant tables are computed for each degree (prati bhāga).

Āryabhaṭa I (b. 476 AD) and the now popular Sūryasiddhānta provide Rsine differences ($R=3438$ ') to get R sine for every $3^{\circ} 45^{\prime}$. Some
texts (handbooks) provide brief tables for the manda and síghra equations for the respective anomalies at even higher interval (step-) lengths. For example, Gaṇeśa Daivajña in his Grahalägavam (1520 AD) ${ }^{8}$ tabulates the manda and śīghra equations of the planets at intervals of 15°. Another popular handbook, Karaṇakutūhalam ${ }^{9}$ of Bhāskara II (b. 1114 AD) gives the jyākhandas (blocks of Rsine values) for every 10°. In such cases intermediate values are obtained by interpolation. While generally linear interpolation is expected to be used, it is truly noteworthy that as early as in the seventh century the great Indian astronomer Brahmagupta (c. 628 AD) provides the 'second order' interpolation to obtain more accurate values for the equations of the centre and of 'conjunction' in his Khaṇdakhādyaka ${ }^{10,11}$.

Now, the pratibhāgī in contrast to the siddhānta and karaṇa texts, provides tables for each degree. In the photocopy with us, no mention of either the author or of the period of the composition is mentioned. A critical edition based on the available manuscripts in due course might throw light on these details. The mean positions of the heavenly bodies have to be worked out using the Kali ahargana, the elapsed number of civil days for the given date from the beginning of the Kaliyuga (the mean midnight between $17^{\text {th }}$ and $18^{\text {th }}$, February 3102 BC). Therefore the Pratibhāg $\bar{\imath}$ text has no need to mention or use a later epoch.

The popularity of $P R B$ in parts of Karnataka and Andhra regions is very clear from the fact that a good number of manuscripts of the main text as also its commentaries are listed in the Catalogue of O.R.I., Mysore.

The important tables in $P R B$ are on (1) the mean motions of the Sun, the Moon, apogee (mandocca) and the ascending node (Rāhu) of the Moon and the five planets; (2) the mandaphala (equation of the centre) of the bodies and (3) the sizghraphala (equation of conjunction) of each
planet; (4) the Sun's declination (krānti) and lastly (4) Moon's latitude (viksepa, śara).

The tables of mean motions of the bodies for each day from 1 to 9 days, every 10 days from 10 to 90 days, every 100 ($n \bar{r} r u$ in Kannada) days from 1 to 9 hundreds, every 1000 (sāvira in Kannada) from 1 to 9 thousands, from 10 to 90 thousands, 1 to 9 lacs (hundred thousand, laksa in Sanskrit and Kannada) and finally for 10 and 20 lacs (i.e. one and two million) days.

7.1 Mean motion, revolutions and sidereal periods in PRB

From the mean motion of the Sun for two million days given in $P R B$, we have $5475{ }^{\text {Rev. }} 6^{\text {s }}$ 25 ${ }^{\circ} 18^{\prime} 33^{\prime \prime} 02^{\prime \prime}$ ' (the superscript S stands for 'signs’ i.e. rāśis of the zodiac). This gives us the Sun's mean daily motion, $S D M=0^{\circ} .985602617263794$. From SDM, we obtain the length of the nirayana (sidereal) solar year $=365.2587703139661$ days and sāvanadinas (civil days) in a Mahāyuga (of 432×10^{4} years) as $1,57,79,17,888$ days.

The number of civil days in a M.Y. according to $S S$ is $1,57,79,17,828$ so that the $b \vec{i} j a$ (correction) for civil days is +60 .

Remark: The present authors, in an effort to update the pañcāñga elements, recommend adoption of $1,57,79,07,487$ as the sāvanadinas (civil days) for a M.Y.

We list the mean daily motions, revolutions (bhagaṇas) and the sidereal periods of the bodies according to PRB in Table 7.1

Note: In Table 7.1, (i) the mean daily motions are given correct to 15 decimal precision (on computer), (ii) the revolutions in a Mahāyuga (of 432×10^{4} solar years) are given to the nearest integer and (iii) the sidereal periods are correct to 4 or 5 decimal places.

Remark: While the proposed number of civil days in M.Y. is $1,57,79,07,487$ (see earlier remark), the

Table 7.1: Daily motion, revns. and sidereal periods in $P R B$

Body	Mean daily motion	Revns. in M.Y.	Sid. period (days)
Moon	$13^{\circ} .17635250091553$	577533340	27.32167
Moon's Mandocca	$0^{\circ} .1113829091191292$	488203	3232.0937
Rāhu	$0^{\circ} .0529848113656044$	232238	6794.4
Kuja	$0^{\circ} .5240193605422974$	2296832	686.9975
Buddha śīgh	$4^{\circ} .092318058013916$	17937061	87.9697
Guru	$0^{\circ} .08309634029865265$	364220	4332.32076
Śukra siğh	$1^{\circ} .60214638710022$	7022376	224.69857
Śani	$0^{\circ} .03343930840492249$	146568	10765.7729

suggested figure for a kalpa (432×10^{7} years), to yield a more accurate value, is $15,77,90,74,87,027$.

As mentioned in the earlier remark, the present authors have proposed revision of bhaganas (revolutions) in a kalpa (432×10^{7} years), sidereal periods of the bodies as shown in Table 7.2. in comparison with Sūryasiddhānta.

8. Tyā GARTI MANUSCRIPT (TYGMS)

We procured recently a copy of a manuscript, called Grahagaṇita padakāni, from a private collection. The manuscript belongs to a small place called Tyāgarti ${ }^{12}$ (also Tāgarti) of Sagar taluk in Shimoga district of Karnataka. The latitude (aksa) of the place is given in terms of $a k s a b h \bar{a}$ (palabhā). This value coincides closely with the known modern value of the latitude of Tyāgarti.

TYGMS explicitly mentiones that it is based on the Sūryasiddhānta. Even like the Pratibhāgī, TYGMS does not need and does not mention a contemporary epoch. Both of them need the Kali ahargaṇa KA for a given date. KA represents the number of civil days elapsed since the beginning of the Kaliyuga viz, the mean midnight between $17^{\text {th }}$ and $18^{\text {th }}$ of February 3102 BC.

This $K A$ accumulated to more than ten lakhs (one million) days around 365 BC . For example, as on August 1, 2011, $K A=18,67,309$, more than 1.8 million days. Therefore both $P R B$ and TYGMS manuscripts provide the mean motion tables even for a lakh, ten lakhs (a million) and a crore (ten million) days for the sake of accuracy. These data help us to obtain the sidereal period and the bhagaṇas (revolutions in a Mahāyuga) of a heavenly body.

Table 7.2: Proposed bhagaṇas in a kalpa

Body	Bhaganas (Revolutions)		Sid. Period(days) Proposed
	$4,32,00,00,000$	Proposed	365.256362738
Moon	$57,75,33,36,000$	$4,32,00,00,000$	27.32166
Moon's Mandocca	$48,82,03,000$	$57,75,29,85,910$	3232.589
Rāhu	$23,22,38,000$	$48,81,25,074$	6793.46
Kuja	$2,29,68,32,000$	$23,22,68,618$	686.9797
Budha śīgh	$17,93,70,60,000$	$2,29,68,76,453$	87.96926
Guru	$36,42,20,000$	$17,93,70,33,867$	4332.589
Śukra siğh	$7,02,23,76,000$	$36,41,95,066$	224.7008
Śani	$14,65,68,000$	$14,02,22,60,402$	10759.23

TYGMS contains 32 folios of tables for astronomical computations. One or two folios are missing in between. For example, the folio for the mean motion of Saturn (Śani madhya padakāni) is missing in the bundle of folios.

Interestingly, the manuscript is in Nägarī script with numerals completely in Kannada script. Even many Kannada words, by the way of instructions or descriptions, are in the Nāgar $\bar{\imath}$ script. Folio 31 (back) mentions "akssaliptāh $842 \mid 17$ " i.e. the latitude in arcminutes is $842 \mid 17$. This means the local latitude $\phi=842^{\prime} 17^{\prime \prime}=$ $14^{\circ} 02^{\prime} 17^{\prime \prime}$. Further, folio 32 mentions "lañkodaya viṣuvacchāyā ṅgula 3". This means that the equinoctial shadow (called aksabhā or palabhā) is 3 angulas (with the gnomon of length 12 añgulas). This gives:
Latitude, $\varphi=\tan ^{-1}(3 / 12)=\tan ^{-1}(0.25)=14^{\circ} 02^{\prime} 10^{\prime \prime} .48$.
Folio 11 (front) mentions "kalivarsa 4813". Now, kali year 4813 corresponds to 1712 AD . In the same folio the mandoccas (apogees) and the pātas (nodes) of the planets are given.

Although for obtaining the mean positions contemporary epoch is not needed, the author of TYGMS perhaps desired updation of the apogee and nodes of the planets. However, the rates of motion of these special points as given in the Sūryasiddhānta are unrealistic from the point of view of our modern known results.

In addition to giving the Kali year as 4813 (1712 AD), TYGMS mentions the nirayana mean position of the Sun as $11^{\text {Ra }} 10^{\circ} 08^{\prime} 03^{\prime \prime}$ which gives the date as March 22 of the year 1712 AD with Ayanāmśa (amount of equinoctial precession) as about 18°. From this data the TYGMS can be dated as March 22, 1712 C.E., three centuries old.

8.1 Solar year, civil days, revolutions etc. in TYGMS

TYGMS gives the Sun's mean motion for 1 crore (10^{7}) days as $10^{\text {Ra }} 06^{\circ} 33^{\prime} 20^{\prime \prime}$ (along with 27377 revolutions as can be calculated). From this we get (i) Sun's mean daily motion, $S D M=$ $0^{\circ} .9852676868$.Therefore, in a Mahāyuga of $43,20,000$ solar years, the number of civil days (sāvanadinas):

$$
\frac{4320000 \times 360^{\circ}}{S D M}=1,57,79,17,792
$$

The corresponding value according to $S S$ is $1,57,79,17,828$. Therefore, $B \bar{j} \bar{j} a$ (correction) of civil days is -36 and
(ii) the length of the nirayana solar year $=360^{\circ} /$ $S D M=365.2587563$ days.

Based on the mean motions of the bodies for ten million days in TYGMS, we have worked out bhaganas (revolutions) and hence the B$B \bar{\jmath} a s$ as shown in Table 8.1

Table 8.1: Mean daily motions, revns. and bījas in TYGMS

Body	Mean motion for 1 crore days					Revolutions. in M.Y.		Bījas
	Revn.	$\boldsymbol{R a}$	D	M	S	TYGMS	SS	
Moon	366009	09	11	27	08	5,77,53,332	5,77,53,336	-4
Moon's Mandocca	3093	11	19	06	20	4,88,202	4,88,203	-1
Rāhu	1471	09	18	08	0	2,32,237	2,32,238	-1
Kuja	14556	01	03	46	40	22,96,832	22,96,832	0
Budha sıīgh	113675	06	0	26	30	1,79,37,059	1,79,37,060	-1
Guru	2308	02	23	25	20	3,64,219	3,64,220	-1
Śukra śīgh	44504	0	23	56	0	70,22,375	70,22,376	-1

Note: In Table 8.1, (i) the mean motions are given for one crore (10 million) days in terms of revolutions, rāśis (signs), degrees (amśa), minutes(kalās) and seconds (vikalās), (ii) revolutions in a Mahāyuga are to the nearest integer, (iii) the last column gives the bījas (correction) to the revolutions given in the Sūryasiddhānta and (iv) details of Śani do not appear in the table since the related folio is missing in TYGMS.

9. Mandaphalas and ŚÍghraphalas in PRB, TYGMS and MKS

In finding the true longitudes of the Sun and the Moon we need apply only the major correction, mandaphala (equation of the centre). But, in the case of the five planets, besides the mandaphala, the other major equation to be applied is süghraphala.

9.1 Mandaphala in the saura tables

The mandaphala (equation of the centre) of a heavenly body is given by the classical expression:

$$
\sin (M P)=\frac{p}{R} \sin (M K)
$$

where MP is the required mandaphala, $M K$ is the mandakendra (anomaly from the apogee), p is the manda paridhi, the periphery of the related epicycle, $R=360^{\circ}$, the periphery of the deferent circle. The mandakendra $M K$ is defined as

MK = (Mandocca - Mean planet) where mandocca is the mean apogee.

Āryabhaṭa I (b. 476 AD) takes the peripheries of the Sun and Moon as constants at $13^{\circ} .5$ and $31^{\circ} .5$ respectively and those for the five planets are variable ones. On the otherhand, the Sūryasiddhānta and the tables under consideration here adopt variable peripheries for all the seven bodies. Table 9.1 lists the limits of these paridhis (peripheries) according to SS.

Table 9.1: Manda paridhis according to SS

Body	Manda Paridhi	
	$\mathbf{(M K = \mathbf { 0 } ^ { \circ } , \mathbf { 1 8 0 } ^ { \circ } \mathbf {) }} \mathbf{(\mathbf { M K } = \mathbf { 9 0 } ^ { \circ } , \mathbf { 2 7 0 } ^ { \circ } \mathbf {) }}$	
Sun	14°	$13^{\circ} 40^{\prime}$
Moon	32°	$31^{\circ} 40^{\prime}$
Kuja	75°	72°
Budha	30°	28°
Guru	33°	32°
Sukra	12°	11°
Śani	49°	48°

The manda paridhi is maximum at the end of an even quadrant (i.e. for $M K=0^{\circ}, 180^{\circ}$) and minimum at the end of an odd quadrant (i.e. for $M K=90^{\circ}, 270^{\circ}$).

If the peripheries at the ends of even and odd quadrants are denoted respectively by p_{e} and p_{o}, then the variable periphery for mandakendra $M K$ is given by

$$
\begin{equation*}
p=p_{e}-\left(p_{e}-p_{o}\right) \times|\sin (M K)| \tag{9.2}
\end{equation*}
$$

where $|\sin (M K)|$ means the numerical or absolute value of $\sin (M K)$.

Thus, according to SS , the mandaphala MP is given by (9.1) using (9.2). The values of MP of the Sun as per the three tables, for $M K$ at intervals of 10°, are compared with the actual ones, obtained from (9.1) and (9.2) in Table 9.2.

In Table 9.2, we have compared the mandaphala values for the Sun whose mandaparidhi varies from $13^{\circ} 40^{\prime}$ to 14°. For $M K$ $=90^{\circ}, M P=130^{\prime} 31^{\prime \prime}=2^{\circ} 10^{\prime} 31^{\prime \prime}$ according to TYGMS. We notice that all the three tables for the Sun give MP in kalās and vikalas (arcminutes, arcseconds). The values differ by a maximum of 5 arcseconds.

According to the Indian classical texts, the greatest $M P$, among the seven heavenly bodies, is for Kuja (Mars) whose mandaparidhi varies from 72° to 75°. For $M K=90^{\circ}$, the mandaparidhi,

Table 9.2: Mandaphala of the Sun

MK	Mandaphala (Equation of the centre)							
	TYGMS		PRB		MAKARANDA		Formula (9.1)	
	ka	vik	ka	vik	ka	vik	ka	vik
10°	23	07	23	07	23	07	23	07
20°	45	19	45	19	45	22	45	21
30°	66	03	66	03	66	02	66	03
40°	84	36	84	35	84	42	84	37
50°	100	31	100	33	100	36	100	33
60°	113	25	113	21	113	25	113	24
70°	122	47	122	47	122	51	122	50
80°	128	31	128	32	128	35	128	36
90°	130	31	130	31	130	32	130	31

Table 9.3: Mandaphala of Kuja

MK	Mandaphala (Equation of centre)					
	TYGMS	PRB		MAKARANDA	Formula (9.1)	
	kalās	kalās	vik	kalās	kalās	vik
10°	123	123	31	111	123	31
20°	242	241	31	219	241	48
30°	352	351	31	320	351	32
40°	449	449	23	414	449	48
50°	534	533	47	498	533	58
60°	602	601	57	570	601	49
70°	651	651	15	627	651	36
80°	681	681	29	667	681	59
90°	692	692	03	689	692	13

$p=p_{o}=72^{\circ}$ so that the corresponding mandaphala $M P=72^{\circ} / 2 \pi=11^{\circ} 27^{\prime} 33^{\prime \prime}=687^{\prime} 33^{\prime \prime}$. To examine how the mandaphala values for a planet according to the saurapaksa tables under consideration compare with one another these are shown in Table 9.3.

We notice in Table 9.3 that (i) MKS and TYGMS give the mandaphala of Kuja only in kalās, to the nearest arcminute while $P B R$ provides the same both in kalās and vikalās. In fact this is the case with other four planets also.

Note: According to MKS, the mandaphalas of the five planets differ from those of the other texts.

For example, for $M K=40^{\circ}$ in Table 9.3 the mandaphala values according to TYGMS and MKS are respectively 449 and 414 kalās. The main reason for this is that, in $S S$ the true position of a star planet is obtained by applying successively four corrections. Among these the manda correction is applied twice in between the two śīghra corrections. On the other hand, MKS simplifies the procedure by reducing only to three corrections. Here the manda samsk $\bar{a} r a$ is applied only once between the two síghra samskāras. In the process Makaranda has consolidated the two manda corrections of $S S$ into a single equation in $M K S^{16}$. This makes the mandaphala value of MKS differ from those of $S S$ and the other related tables.

Fig. 9.1: Variation of $M P$ of the planets against $M K$.

In Fig. 9.1, the variation of the mandaphala (MP) with the mandakendra (MK, the anomaly from the apogee) is shown graphically for the five planets. The behaviour of the graphs is sinusoidal with $M P=0^{\circ}$ for $M K=0^{\circ}, 180^{\circ}$ and reaching the maximum at $M K=90^{\circ}$

9.2 Síghraphala in PRB, TYGMS and MKS

As pointed out earlier, in obtaining the true planets we apply two major equations which are referred to as the manda-samskāra and the ssīghrasamskāra. While the former corresponds to the equation of the centre, the latter to the transformation from the heliocentric to the geocentric frame of reference for the five tārāgrahas (star-planets).

The classical procedure for śsighraphala is based on the expression:

$$
\begin{equation*}
\sin (S P)=\frac{p}{S K R}[R \sin (S K)] \tag{9.3}
\end{equation*}
$$

where $S P$ is the required sitghraphala, p is the śighraparidhi, the periphery of the śighra epicycle, $R=3438$ ' and $S K R$ is the síghrakarna, the síghra hypotenuse given by
$S K R^{2}=(\text { Sphutakoṭi })^{2}+(\text { Dohphala })^{2}$.

Let $r=\frac{p}{360^{\circ}}$ then
Dohphala $=r[R \sin (S K)]$
Kotiphala $=r[R \cos (S K)]$

$$
\begin{align*}
\text { Sphutakoṭ } i & =R+r[R \cos (S K)] \tag{9.6}\\
& =R[1+r \cos (S K)] \tag{9.7}
\end{align*}
$$

The śighrakarṇa SKR is given by
$S K R^{2}=(\text { Dohphala })^{2}+(\text { Sphutakoti })^{2}$ using (9.5) and (9.7)

$$
\begin{align*}
& \quad=R^{2}\left[\{r \sin (S K)\}^{2}+\{1+r \cos (S K)\}^{2}\right] \\
& \quad=R^{2}\left[r^{2}+2 r \cos (S K)+1\right] \\
& \therefore S K R=R \sqrt{r^{2}+2 r \cos (S K)+1} \tag{9.8}
\end{align*}
$$

Substituting (9.8) in (9.3), we get

$$
\begin{gather*}
\sin (S P)=\frac{r(R \sin S K)}{S K R} \\
=\frac{r(R \sin S K)}{\sqrt{r^{2}+2 r \cos (S K)+1}} \tag{9.9}
\end{gather*}
$$

so that the síghraphala,

$$
\begin{equation*}
S P=\sin ^{-1}\left[\frac{r(R \sin S K)}{\sqrt{r^{2}+2 r \cos (S K)+1}}\right] \tag{9.10}
\end{equation*}
$$

Example 9.1: Find the śigghra correction for Śani (Saturn) given the following:

Śani's śīghrakendra, $S K=62^{\circ} .0406$ and Śani's corrected sīghraparidhi, $p=39^{\circ} .88328$

We have
(i) Dohphala $=\frac{39^{\circ} .88328}{360} \times 3438^{\prime} \times \sin \left(62^{\circ} .0406\right)=336{ }^{\prime} .4284$
（ii）Kotiphala $=\frac{39^{\circ} .88328}{360} \times 3438^{\prime} \times \cos \left(62^{\circ} .0406\right)=178^{\prime} .5765$
（iii）Sphuṭakoṭ $=3438^{\prime}+178^{\prime} .5765=3616 ' .5765$
（iv）Śighrakarṇa $=\sqrt{\left(336^{\prime} .4284\right)^{2}+\left(3616^{\prime} .5765\right)^{2}}=3632^{\prime} .1907$
（v）$R \sin (S P)=\frac{3438^{\prime} \times 336^{\prime} .4284}{3632^{\prime} .1907}=318^{\prime} .44166$
\therefore Śighraphala，$S P=\sin ^{-1}\left[\frac{318^{\prime} .44166}{3438^{\prime}}\right]=5^{\circ} 18^{\prime} 53^{\prime \prime}$ ．
The ssighraphala is additive or subtractive according as the śighrakendra SK is less than or greater than 180° ．

In the above example，since $S K=62^{\circ} .0406$ $<180^{\circ}, S P>0$ i．e．$S P=+5^{\circ} 18^{\prime} 53^{\prime \prime}$ ．

It should be noted that in the case of the süghra correction also，as for the mandaphala，the śīghraparidhi（periphery）p is a variable given by

$$
\begin{equation*}
p=p_{e}-\left(p_{e}-p_{0}\right) \times|\sin (S K)| . \tag{9.11}
\end{equation*}
$$

The peripheries p ，for different planets，at the ends of even and odd quadrants according to the Sūryasiddhānta are given in Table 9.4

Table 9．4：Śighraparidhi of planets

Planet	Śghraparidhi	
	$S K=0^{\circ}, 180^{\circ}$	$S K=90^{\circ}, 270^{\circ}$
Kuja	235°	232°
Budha	133°	132°
Guru	70°	72°
Sukra	262°	260°
Sani	39°	40°

The śighraparidhis for Kuja，Budha and Śukra are greater at the end of the even quadrents $\left(S K=0^{\circ}, 180^{\circ}\right)$ than at the odd quadrants $(S K=$ $90^{\circ}, 270^{\circ}$ ）．But it is the other way for Guru and Śani．

A sample folio from $P R B$ ，displaying Śani＇s śīghraphalas for $S K=36^{\circ}$ to 84° is shown in Fig．9．2．The numerals are in Kannada script． From this folio of $P R B$ an extract of the śīghraphala values for $S K=42^{\circ}$ to 44° are reproduced in Table 9．5．

Among the five tārāgrahas，Śukra（Venus） has the maximum sīghraparidhi and hence we choose to tabulate its values according to the

z\TSN2:N2l心ov2 of
z\TSN2:N2l心ov2 of

\&n}->>>\sqrt{}{1%2
\&n}->>>\sqrt{}{1%2
8)
8)

x-1)
x-1)

<<is सins心00श\=18!
<<is सins心00श\=18!
xथ1200t x।@0राकरा
xथ1200t x।@0राकरा

Fig．9．2：síghrapadaka of Śani，a folio from Pratibhāgī ms

Table 9.5: A sample of śīghraphalas of Śani according to PRB

SK	Śíghraphala	Difference
42°	$233^{\prime} 44^{\prime \prime}$	$+04^{\prime} 49^{\prime \prime}$
43°	$238^{\prime} 33^{\prime \prime}$	$+04^{\prime} 49^{\prime \prime}$
44°	$243^{\prime} 22^{\prime \prime}$	$+04^{\prime} 49^{\prime \prime}$

different sāriṇīs and padakas, at intervals of 15° for $S K=0^{\circ}$ to 180° in Table 9.6

In Table 9.6 the Síghraphalas of Śukra according to the three astronomical tables, MKS, $P R B$ and TYGMS are compared with the corresponding values according to the popular Karaṇa text Grahaläghavam (GL) ${ }^{5}$ and those obtained from formula (9.10)

The three texts of tables are all based on the Sūryasiddhānta and hence their śīghraphala results are close to those obtained from formula 9.10 based to SS.

In the first column the síghrakendra (SK), the 'anomaly of conjunction' is taken from 0° to 180° at intervals of 15°. GL has given the śighrankas for every 15° of $S K$. To get the actual
śighraphala in degrees, we have to divide the śighrānka (col.2) by 10. For example, the for śīghräǹka for $S K=15^{\circ}$ is 63 . By dividing 63 by 10 we get 6.3 i.e. $6^{\circ} 18^{\prime}$ as shown in col. 3. Thus, the śīghrāñka in col. 2 are divided by 10 and expressed as degrees and arcminutes (aṃśa and kal \bar{a}) in col. 3.

While MKS gives the sīghraphala values in degrees and minutes (col. 4), $P B R$ gives them in kalās and vikalās (col. 5) and TYGMS only in kalās (col. 6). However, for the sake of immediate comparison the values from all the five sources are expressed in degrees etc. We notice that the three texts of sāriṇis (or padakas) are loyal to the basic text $S S$ on which these are based, and their śighraphala values are much closer to the formulabased last column. But, Grahalāghavam, on which the Gaṇeśapaksa is based has different set of parameters and completely dispenses with the all important trigonometric ratio sine by adopting a very good algebraic approximation.

A folio from TYGMS giving Śukra's ssīghraphala (from Karka) is shown in Fig 9.3.

Table 9.6: Síghraphala of Śukra

$\boldsymbol{S K}$	Grahaläghavam			MKS	PBR	TYGMS

Fig. 9.3: Śukra's (Karkādi) sīghraphala, a folio from TYGMS

Table 9.7: A sample of ssīghraphalas of Śukra (Karkādi) according to TYGMS

$\boldsymbol{S K}$	Ṥ̈ghraphala	Difference
80°	2348^{\prime}	-19^{\prime}
81°	2329^{\prime}	-18^{\prime}
82°	2311^{\prime}	-20^{\prime}

9.3 Maximum śīghraphala and critical síghrakendra

The mandaphala of a body attains its maximum for the argument, mandakendra $=90^{\circ}$ as can be seen from equation (9.1)

However, surprisingly MKS differs from the other two texts and also from the basic source $S S$ in as far as the mandaphalas of the planets attain their maxima not at $M K=90^{\circ}$ but over a range beyond 90°. However, for the Sun and the Moon, MKS is in line with PRB and TYGMS .

The behaviour of the śīghraphala (SP) variation is truly interesting. Here also the sine term of the argument occurs, even as in the case of the mandaphala, as a factor in the numerator. But, unlike the other case, the expression has sine and cosine terms, under square-root in the denominator. This structure of the expression for SP causes it to have different critical values for the síghrakendra (SK). Of course the maximal values of SP are different for the different planets though these bodies share the common ground
value 0 at $S K=0^{\circ}$ and 180° i.e. when a mean planet is in conjunction or opposition with the mean Sun. Table 9.6 gives the critical values of SK and the corresponding maximal śighraphalas for the different planets.

Table 9.6: Maximum śīghraphala and critical SK

Planet	Critical SK	Maximum SP
Kuja	$130^{\circ} .8$	$40^{\circ} 16^{\prime} 26^{\prime \prime}$
Budha	$111^{\circ} .7$	$21^{\circ} 31^{\prime} 19^{\prime \prime}$
Guru	$101^{\circ} .2$	$11^{\circ} 31^{\prime} 50^{\prime \prime}$
Śukra	$136^{\circ} .7$	$46^{\circ} 22^{\prime} 55^{\prime \prime}$
Śani	$96^{\circ} .2$	$06^{\circ} 22^{\prime} 42^{\prime \prime}$

Since the classical tables give SP for each degree, we can trace the critical $S K$ to the nearest degree and the corresponding $S P$. These results are shown in Table 9.7
(i) From Table 9.7 we observe that $P R B$ tables for $S P$ is unique among the three texts in giving the $S P$ of each planet in vikalās (arcseconds) also. While $M K S$ lists the $S P$ in degrees and arcminutes (aṃśa and kalā), TYGMS provides the values only in kalās and PRB gives in kalās and vikalās. In Table 9.7 we have expressed the values of $S P$ in degrees etc. for easy comparison. (ii) Since MKS does not give SP in vikalās, the critical $S K$ values are shown to lie within a range of 2° to even 5° (as for Ś ni). However, in the case of TYGMS, though here also

Table 9.7: Maximum $S P$ in Sāriṇīs

Planet	Makaranda Sārị̣ı̄		Pratibhāgī ms.		Tyägarti ms.	
	Cr. SK	Max. SP	Cr. SK	Max. SP	Cr. SK	Max. SP
Kuja	$130^{\circ}-132^{\circ}$	$40^{\circ} 16^{\prime}$	131°	$40^{\circ} 17^{\prime} 13^{\prime \prime}$	131°	$40^{\circ} 17^{\prime}$
Budha	$109^{\circ}-113^{\circ}$	$21^{\circ} 31^{\prime}$	112°	21³2'14"	112°	$21^{\circ} 31^{\prime}$
Guru	$100^{\circ}-103^{\circ}$	$11^{\circ} 31^{\prime}$	101°	11³1'36"	$101{ }^{\circ}$	$11^{\circ} 32^{\prime}$
Śukra	$136^{\circ}-138^{\circ}$	$46^{\circ} 24^{\prime}$	135°	$46^{\circ} 23^{\prime} 05^{\prime \prime}$	$135^{\circ}-138^{\circ}$	$46^{\circ} 23^{\prime}$
Śani	$94^{\circ}-99^{\circ}$	$6^{\circ} 22^{\prime}$	98°	$6^{\circ} 22^{\prime} 42$ "	97°	$6^{\circ} 23^{\prime}$

vikalās are not given for $S P$, it is possible to locate the critical $S K$ correct to a degree for each planet. But in the case of Śukra, the critical SK lies between 135° and 138° since the corresponding $S P$ is given the same, $46^{\circ} 23^{\prime}$ ($=2783$ kalās). (iii) Unlike MKS and PRB, the Tyagarti ms. lists the $S P$ against $S K$ in two parts: 0° to $90^{\circ} \mathrm{Mrg} \bar{a} d i$ (from the beginning of Capricorn) and 0° to $90^{\circ} \mathrm{Karka} d i$ (from the beginning of Cancer). Because of this arrangement, if we need $S P$ for $S K>90^{\circ}\left(<180^{\circ}\right)$, say of the form $90^{\circ}+\theta$ (where θ is acute), then to get the related $S P$ we have to look for the same in the second part (Kark $\bar{a} d i$) tables against the argument $\left(90^{\circ}-\theta\right)$.

Thus, for example, in the tables of śīghraphala for Śani, to get $S P$ for $S K=98^{\circ}=90^{\circ}$ $+8^{\circ}$ (i.e. $\theta=8^{\circ}$) we have to look for the argument
$90^{\circ}-\theta$ i.e. $90^{\circ}-8^{\circ}=72^{\circ}$ in the second part of the śīghra tables.

In Fig. 9.4, the variation of śz̈ghraphala (SP) the with the sigghra anomaly (SK) is shown graphically for the five planets. The graphs, with $S P=0^{\circ}$ for $S K=0^{\circ}$ and 180°, reach the maxima not at $S K=90^{\circ}$ but at different critical points for different planets as given in Table 9.6. Both $S K$ and $S P$ are in degrees.

10. Eclipse computations

An important phenomenon to which two separate chapters are devoted in the siddhantic texts is eclipse (grahana, uparāga). In fact, the benchmark for the validation of the parameters and procedures was the observation of lunar and

Fig. 9.4: Variation of $S P$ with $S K$ for planets
solar eclipses and planetary conjunctions, especially the lunar occultations of stars and planets. ${ }^{11,12}$ Nīlakaṇṭ̣a Somayāji (1500 AD) rightly remarks how his paramaguru (grandpreceptor) Parameśvara composed his text Samadrggaṇita based on fifty-five years' astute observation of eclipses and planetary conjunctions (nirīksya grahaṇa grahayogādiṣu).

Viśvanātha Daivajña in his Udāharaṇa ${ }^{1}$ commentary on MKS provides an example each for lunar and solar eclipses.
Example 10.1: Lunar eclipse of Śaka 1534, lunar month Vaiśākha suddha (bright fortnight) 15 (fullmoon day, paurṇimā) $54 \mid 40 \mathrm{gh}$. Anurādh \bar{a} naksatra with gataisyayoga (sum of the elapsed and to be covered durations) $58 \mid 36 \mathrm{gh}$. The given traditional date corresponds to May 15, 1612 AD. The instant of fullmoon is taken approximately as $54 \mid 40 \mathrm{gh}$.

Viśvanātha gives the longitudes of the Sun, Moon and Rāhu (Moon's node) as follows:
Sun: $1^{\mathrm{R}} 06^{\circ} 30^{\prime} 37^{\prime \prime}$, Moon: $7^{\mathrm{R}} 06^{\circ} 34^{\prime} 35^{\prime \prime}$ and Rāhu: $1^{\mathrm{R}} 14^{\circ} 18^{\prime} 11^{\prime \prime}$.

10.1 Angular diameters of the Moon and the earth's shadow cone

Interestingly, MKS gives the angular diameters (bimba) of the Moon and the earth's shadow cone (bhūccāy $\bar{a}, b h u ̄ b h a \bar{a})$ as determined by the total duration of the running naksatra (of the Moon). The image of the related folio is in Fig.10.1.

An eatract of Fig. 10.1 is given in Table 10.1.

Note : In Table 10.1 the word "pāta" refers to the shadow and not the Moon's node.

1 Añgula (Añg.) = 60 pratyañgula (pra.)

Table 10.1: Candra bimba and Bhūcchāyā bimba

Duration of naksatra in Ghatī	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	
Candra	Añg	11	11	11	10	10	10	10	10	10	09	09
bimba	pra.	34	22	10	59	48	37	27	17	07	58	48
Pāta	Arig	29	28	28	27	27	26	25	25	24	24	24
bimba	pra.	34	54	16	38	02	27	53	20	49	48	48

Fig.10.1: Tables of bimbas and dhanu, folio from Makaranda sāriṇī

For the given example 10.1 we have to find the angular diameters of the Moon and the earth's shadow cone using Table10.1. The duration of the running Anurādhā naksatra is given as $58 \mid 36 \mathrm{gh}$. This value lies between 58 and 59 ghatīs for which the corresponding values of the Moon's angular diameters are respectively $11 \mid 10$ and $10 \mid 59$ añgulas. Now, by the rule of three (trairāsíi, anupāta) we obtain the Moon's angular diameter as $11 \mid 3.4$ añgulas.

Similarly the diameter of the shadow cone (bhūccāyā bimba) is calculated. In the above Table 10.1, under 58 and 59 ghaṭīs against pāta bimba, we have 28 | 16 and 27 | 38 angulas. Therefore, for the argument $58 \mid 36 \mathrm{gh}$. in between, proportionately we get $27 \mid 53.2$ angulas as the mean diameter of the earth's shadow. This needs to be corrected to get the true (spasṭa) diameter.

In the same folio of MKS, corrections to the mean diameter of the shadow cone are given (in añgulas and pratyañgulas) for the Sun's ingressions to different rāssis (Meṣa etc). In the example under consideration, the true nirayana Sun is $1^{\mathrm{R}} 06^{\circ} 30^{\prime} 37^{\prime \prime}$ i.e. Vrṣabha rāśi $06^{\circ} 30^{\prime} 37^{\prime \prime}$. Now, under Vrṣabha the correction given is $0 \mid 31$ añg. and that under the next rāsi Mithuna is $0 \mid 37$ ang. The difference between them is $+0 \mid 06$ ang. Therefore, for the balance $06^{\circ} 30^{\prime} 37^{\prime \prime}$ we get $\frac{06^{\circ} 30^{\prime} 37^{\prime \prime}}{30^{\circ}} \times(0 \mid 06)$ añg. $=0 \mid 1.3$ añg.

Adding this to the value $0 \mid 31$ ang . corresponding to the beginning of Vrssabha, we get the correction $=0|31+0| 1.3=0 \mid 32.3$ ang. Adding this correction to the mean diameter 27 | 53.2 ang . obtained earlier, we get the true diameter:
spast $\bar{a} b h u ̄ b h \bar{a}=27|53.2+0| 32.3=28 \mid 25.5 \approx 28$ | 26 añgulas.

Already we have the Moon's diameter, Candrabimba $=11 \mid 3.4$ añg. The sum of the semidiameters of the Moon and the shadow cone,
Mānaikya khanda $\left.a=\frac{1}{2}(11|3.4+28| 26) \approx 19 \right\rvert\, 45$ añg.

(ii) Moon's latitude (Candra śara)

Moon's nodal distance, Virāhucandra,

$$
\begin{aligned}
V R C H & =\text { Moon’s longitude }- \text { Rāhu’s longitude } \\
& =7^{\mathrm{R}} 06^{\circ} 34^{\prime} 35^{\prime \prime}-1^{\mathrm{R}} 14^{\circ} 18^{\prime} 11^{\prime \prime} \\
& =5^{\mathrm{R}} 22^{\circ} 16^{\prime} 24^{\prime \prime}=172^{\circ} 16^{\prime} 24^{\prime \prime} .
\end{aligned}
$$

Bhuja of VRCH $=180^{\circ}-172^{\circ} 16^{\prime} 24^{\prime \prime}=$ $7^{\circ} 43^{\prime} 36^{\prime \prime}$. Now the table for the Moon’s sara in MKS gives the latitude for the values of the argument (bhuja of $V R C H$) from 1° to 90°. From Table 10.2, under the argument values 7° and 8°, we have śara given respectively as $32 \mid 52$ and 37 | 32 in kalās (arcminutes) with a difference of $4 \mid 40$ kalās (Table 10.2). By proportions, for the balance of $43^{\prime} 36^{\prime \prime}$ between 7° and 8° we get the increment in śara as $3 \mid 23.4$ kalās. Adding this increment to the śara $32 \mid 52$ kalās (for 7°), we get
Candra śara $=32|52+3| 23.4=36 \mid 15.4$ kalās $\approx 12 \mid 5.1$ ang .
Note : Śara is positive or negative according as $V R C H$ is less or greater than 180°.

Table 10.2: A sample of Chandra śara in MKS

$\boldsymbol{V R C H}$	śara
1°	$4^{\prime} 43^{\prime \prime}$
2°	$9^{\prime} 25^{\prime \prime}$
$\ldots \ldots$.	$\ldots \ldots$.
7°	$32^{\prime} 52^{\prime \prime}$
8°	$37^{\prime} 32^{\prime \prime}$
$\ldots \ldots$	$\ldots \ldots$
90°	$270^{\prime} 0 \prime \prime$

(iii) Grāsa and sthiti

By definition, grāsa = Manaikya khaṇ̣̣a - | śara |
noting that if sara is negative, then its numerical value is considered.
In the example, grāsa=19|45-12|5.1 $\approx 7 \mid 40$ añg.

MKS gives the following Table10.3 for sthiti (half-interval) as a function of grāsa (amount of obscurity):

Table 10.3: Sthiti (Half-duration) for lunar eclipse

Grāsa (añg.)	1	2	3	4	5	6	7	8	9	10	11
Sthiti Gh.	1	2	2	2	3	3	3	3	3	4	4
Pa.	29	4	30	50	7	22	35	46	56	4	11
Grāsa (añg.)	12	13	14	15	16	17	18	19	20	21	22
Sthiti Gh.	4	4	4	4	4	4	4	4	4	4	4
Pa.	18	23	28	31	34	36	37	37	38	38	39

In the example under consideration, grāsa $=7 \mid 40$ añg. In Table 10.3 for half- duration (sthiti), we find that below the entries 7 and 8 angulas of grāsa we have the corresponding sthiti values respectively as $3 \mid 35 \mathrm{gh}$. and $3 \mid 46 \mathrm{gh}$. , the difference between them being $0 \mid 11 \mathrm{gh}$. For 1 añg. of grāsa. Therefore, for the balance of $0 \mid 40$ ang ., the corresponding increment in sthiti is $0 \mid 07 \mathrm{gh}$. Adding this to $3 \mid 35 \mathrm{gh}$., we get sthiti $=3 \mid 35+$ $0|07=3| 42 \mathrm{gh}$.

Commentator Viśvanātha stops the example at this stage recommending the further procedure to be continued as per the relevant karaṇa (handbook). However, respectively subtracting sthiti from and adding the same to the instant of the fullmoon we get the sparśa (beginning) and the mokṣa (end) of the lunar eclipse. Thus we have:

Sparśakāla: 54|40-03|42=50|58 gh. and Moksakāla $=54|40+03| 42=58 \mid 22 \mathrm{gh}$.
Remark: Computations of eclipse according to the Improved Siddhāntic Procedure (ISP) ${ }^{14,15}$, developed by the present authors, give the following circumstances:

Moon’s diameter $=31$ '. $72=10.573$ añg. and shadow's diameter $=86$ '.756 $=28.9187$ añg.
Moon's latitude (śara) $=+0^{\circ} 38^{\prime} .72$.

Summary of the eclipse

Beginning (sparśa): $1^{\mathrm{h}} 50^{\mathrm{m}}$ a.m. (IST)
Middle (madhya): $3^{\mathrm{h}} 15^{\mathrm{m}}$ a.m. (IST)
End (moksa): $4^{\mathrm{h}} 40^{\mathrm{m}}$ a.m. (IST)
Half-duration: $1^{\mathrm{h}} 25^{\mathrm{m}}$ (correct to a minute).

According to Viśvanāthā’s udāharaṇa on $M K S$, the half-duration (sthiti) is $3 \mid 42 \mathrm{gh}$.
i.e. $1^{\mathrm{h}} 28^{\mathrm{m}} 48^{\mathrm{s}}$. There is a difference of $3^{\mathrm{m}} 48^{\mathrm{s}}$ in the half duration. This is due to the approximate values taken in the traditional tables for the related parameters.

Example 10.2: We now consider the example for a solar eclipse given by Viśvanātha in his udāharaṇa commentary on MKS: Śaka 1532, lunar month Mārgasīrṣa kṛ̣̣na (dark fortnight) 30, Wednesday, 11 | 59 gh . This traditional date corresponds to December 15, 1610 AD (Gregorian). The parameters of the participating bodies at the instant of the new moon are as follows:

True nirayana Sun, $S=8^{\mathrm{R}} 05^{\circ} 26^{\prime} 20^{\prime \prime}$
Lagna (ascendant), $L=11^{\mathrm{R}} 02^{\circ} 05^{\prime} 34^{\prime \prime}$
(i) Sūryabimba: From the related table Viśvanātha obtains the Sun's angular diameter,

Sūryabimba $=11 \mid 24$ añgulas.
(ii) Lambana: Subtracting 3 rāśis (tribhā) from Lagna, we get:
Tribhonalagna: $8^{\mathrm{R}} 02^{\circ} 05^{\prime} 34^{\prime \prime} \equiv$ TBL
$\therefore S-T B L: 8^{\mathrm{R}} 05^{\circ} 26^{\prime} 20^{\prime \prime}-8^{\mathrm{R}} 02^{\circ} 05^{\prime} 34^{\prime \prime}=3^{\circ} 20^{\circ} 46^{\prime \prime}$
From the table for lambana (the longitude component of the lunar parallax), Viśvanātha's obtains lambana $=0 \mid 14 \mathrm{gh}$. corresponding to $S-T B L=3^{\circ} 20^{\prime} 46^{\prime \prime}$.
(iii) Krānti (declination)

Next, the krānti of the Sun is determined. For the given year, saka 1532 (1610 AD) the
accumulated amount of precession, ayanāmśa = $16^{\circ} 39^{\prime} 54^{\prime \prime}$. Adding this to the (sidereal) Sun we get the sāyana (tropical) Sun. Thus, we have
Sāyana Sun $=8^{\mathrm{R}} 05^{\circ} 26^{\prime} 20^{\prime \prime}+16^{\circ} 39^{\prime} 54^{\prime \prime}=$ $8^{\mathrm{R}} 22^{\circ} 06^{\prime} 14^{\prime \prime}$.

Bhujāmśa of sāyana Sun $=8^{\mathrm{R}} 22^{\circ} 06^{\prime} 14^{\prime \prime}-6^{\mathrm{R}}=$ 8206'14".

Dividing the bhujāmśa by 6 , the quotient is 13 and the remainder $4^{\circ} 06^{\prime} 14^{\prime \prime}$. Now, from the table for krānti (declination), under entries 13 and 14 in the top row against the kostthaka readings are respectively $3|54| 26$ and $3|58| 36$ in ghattīs. Now, by the rule of proportions, the krānti for the above obtained bhujāmśa of the sāyana Sun comes out as 3 | 57 | 20 gh . Multiplying this result by 6 , we get krānti degrees (bhāgāh) as $23^{\circ} 44^{\prime}$. Since sāyana Sun >6 rāśis, declination δ is negative i.e. $\delta=-23^{\circ} 44^{\prime}$. Note that classical Indian astronomers always took the Sun's maximum declination as 24°.

A folio from TYGMS giving Sun's krānti is shown in fig. 10.2.

Fig. 10.2: Krānti (declination) table of the Sun, a folio from TYGMS

Table 10.4: A sample of Sun's krānti according to TYGMS

$\boldsymbol{\lambda}$	Krānti $=\boldsymbol{\delta}$	Difference
45°	$1002^{\prime} 22^{\prime \prime}$	$17^{\prime} 28^{\prime \prime}$
50°	$1088^{\prime} 7{ }^{\prime \prime}$	$16^{\prime} 13^{\prime \prime}$
55°	$1199^{\prime} 46^{\prime \prime}$	$15^{\prime} 13^{\prime \prime}$
60°	$1237^{\prime} 35^{\prime \prime}$	$12^{\prime} 19^{\prime \prime}$

Example: Suppose Sun's tropical longitude $\lambda=$ 45°.

According to Table 10.4, $\delta=1002$ ' 22". Putting $\lambda=45^{\circ}$ and taking $\varepsilon=24^{\circ}$ (the traditional value) in the expression

$$
\delta=\sin ^{-1}(\sin \varepsilon \sin \lambda)
$$

we get $\delta=1002$ ' 52 " $555^{\prime \prime} .02$. We see that the value of δ by TYGMS is close to the actual value with in an error of 30 ".

Remark: We have the expression for the declination δ of the Sun:

$$
\sin \delta=\sin \varepsilon \sin \lambda
$$

Now, taking $\varepsilon=24^{\circ}$ and the tropical longitude of the Sun,
$\lambda=8^{\mathrm{R}} 22^{\circ} 06^{\prime} 14^{\prime \prime}$ i.e. $262^{\circ} 06^{\prime} 14$ ". we get $\delta=$ $-23^{\circ} 45^{\prime} 30^{\prime \prime}$. However, with the better value $\varepsilon=$ $23^{\circ} .5, \delta=-23^{\circ} 15^{\prime} 50^{\prime \prime}$.

Viśvanātha determines the Sun's krānti by another method. Now, sāyana
Sun $=8^{\mathrm{R}} 22^{\circ} 06^{\prime} 14^{\prime \prime}$. Subtracting this from one revolution (bhagaṇa) i.e. $12^{\text {R }}$, we have
$12^{\mathrm{R}}-8^{\mathrm{R}} 22^{\circ} 06^{\prime} 14^{\prime \prime}=3^{\mathrm{R}} 07^{\circ} 53^{\prime} 46$ " i.e. $97^{\circ} 53^{\prime} 46^{\prime \prime}$.
Dividing this by 6, we get the quotient (labdhi) 16 and the remainder $1^{\circ} 53^{\prime} 46^{\prime \prime}$. By the rule of proportions Viśvanātha obtains the Sun's declination as $23^{\circ} 44^{\prime}$, in its numerical value, the same as the one obtained earlier. Further, he refines this value to get $\delta=-23^{\circ} 44^{\prime} 58^{\prime \prime}$.
(iv) Candraśara (Moon’s latitude): We have the bhuja of virāhucandra $=7^{\circ} 43^{\prime} 46{ }^{\prime \prime}$. Although Viśvanātha has not given explicitly Rāhu's longitude, he seems to have taken it as $2^{\mathrm{R}} 13^{\circ} 10^{\prime} 06^{\prime \prime}$. In that case we have virāhucandra, $V R C H=8^{\mathrm{R}} 05^{\circ} 26^{\prime} 20^{\prime \prime}-2^{\mathrm{R}} 13^{\circ} 10^{\prime} 06^{\prime \prime}=$ $5^{\mathrm{R}} 22^{\circ} 16^{\prime} 144^{\prime \prime}$. Bhuja of $V R C H=6^{\mathrm{R}}-5^{\mathrm{R}} 22^{\circ} 16^{\prime} 144^{\prime \prime}$ $=7^{\circ} 43^{\prime} 46^{\prime \prime}$.

From the sara table, for bhuja 70043'46", the Moon's latitude (śara) comes out as 36'16". Since $V R C H<6^{\mathrm{R}}$, the sara is positive. Dividing this śara in kalās (arcminutes) by 3 we get śara \approx $12 \mid 05$ añgulas. Viśvanātha stops his example here
and expects the readers to continue working as per the of the
Remark: It is interesting that Viśvanātha Daivajña works out the same example in his udāharaṇa commentary on Gaṇeśa Daivajña Grahaläghavam (epoch: March 19, 1520 AD). We summarize the result for comparison. For the given date, cakra $=8$, varsagaṇa $=90$ and ahargaṇa $=$ 1005. Here cakra is a cycle of 4016 days, close to 11 sidereal solar years.

At the instant of new moon i.e. at $13 \mid 04$ $g h$. after sunrise, we have

True Sun $=$ True Moon $=8^{\mathrm{R}} 05^{\circ} 26 \mathrm{I} .4$ and Rāhu $=$ $2^{\mathrm{R}} 11^{\circ} 41^{\prime} .3$;

Natāmśa $=\delta-\varphi=-49^{\circ} 04^{\prime} 52^{\prime \prime}$ where $\delta=$ $-23^{\circ} 38^{\prime} 10^{\prime \prime}$ the declination of vitribhalagna and $\varphi=25^{\circ} 26^{\prime} 42$ ", the latitude of Vāranāsī (Kāśī). From this, the lambana $=0 \mid 11 \mathrm{gh}$. so that the apparent conjunction of the Sun and the Moon, spasṭa darśānta is at $12 \mid 53 \mathrm{gh}$. after sunrise. The mean half duration (sthiti) is $2 \mid 44 \mathrm{gh}$. Finally, the beginning (sparśa), the middle (madhya) and the end (moksa) timings are respectively $9 \mid 03 \mathrm{gh}$. , $13 \mid 04 \mathrm{gh}$. and $16 \mid 44 \mathrm{gh}$. after the local sunrise at (Kāŝī).

Conclusion

In the present paper we have discussed the different aspects of Indian astronomy and calendrical system like (i) planets' true positions involving manda and śighra equations, (ii) tithi and naksatra, (iii) eclipses involving krānti (declination) and śara (latitude) using various tables of the saura paksa like Makaranda sāriṇ̄̄, Pratibhāgī and Tyāgarti manuscripts.

These tables are based on the popular Sanskrit treatise, Sūryasiddhānta. We find that these tables yield close values. Interestingly MKS simplifies the procedure for a true planet by reducing the steps of successive corrections from four (as in $S S$) to only three by composing separate
tables of mandaphala by consolidating the two conventional ways of applying the manda equation twice. The traditional Hindus were required to perform their daily rituals and observances by declaring the daily tithi and naksatra etc. This purpose was adequately served by using the sāriṇ $\bar{\imath}$ (tables) rather than using the main metrical texts of siddhāntas and karaṇas.

The very fact that the traditional priestly class had the practice of declaring the daily calendrical details at the time for thousands of years implies that they had simple algorithmic procedures without using the texts every time.

Acknowledgement

The authors sincerely acknowledge their indebtedness to (i) Dr. Jagadish of Shimoga for procuring a copy of TYGMS for their use, (ii) O.R.I., Mysore for supplying a copy of $P R B \mathrm{~ms}$. and (iii) I.N.S.A., New Delhi, for the research projects sanctioned to Dr. S.B.R. and Dr. P.V. and (iv) the learned reviewers for the valuable suggestions.

Notes and References

1. Sodāharaṇa Makaranda sāriṇī with Viśvanātha Daivajña’s com. udāharaṇam, Śrī Venkateśvara Press, Bombay, 1913 p.1.
2. Pingree, David, Sanskrit Astronomical Tables in the United States (SATIUS), Trans. of the Am. Phil.Soc; Phildelphia, 1968.
3. Pingree David, Sanskrit Astronomical Tables in England (SATE), The Kuppuswami Sastri Res. Inst., Madras, 1973.
4. Makarandaprakāśah. Pt. Laṣaṇlāla Jhā, Chaukhambā Surabhāratī Prakaśan, Varanasī, 1998.
5. Jyotīrmimāṃsā of Nīlakanṭṭa Somayāji Ed. K.V. Sarma, V.V.B. Inst. of Skt. \& Indological Studies, Hoshiarpur, 1977, p 6.
6. Pingree, SATIUS p. 43, the values of the mean daily motions of the bodies slightly differ from our values in Table 5.1.
7. A copy of the Pratibhāgi (PRB) manuscript procured from the Oriental Research Institute (ORI), Mysore.
8. Grahalāghavaṃ of Gaṇeśa Daivajña, S. Balachandra Rao and S.K. Uma, Eng. Exposition, Math. Notes etc., IJHS, 41.1-4(2006), INSA, New Delhi, 2006, p S89 and S91.
9. Karaṇakutūhalam of Bhāskara II, Dr. S. Balachandra Rao and Dr. S.K. Uma, an Eng. Tr. with Notes and Appendices, IJHS, 42.1-2 (2007), 43.1 \& 3 (2008) INSA, New Delhi, 2008, p S18.
10. A.K. Bag, Mathematics in Ancient and Medieval India, Chowkamba Orientalia, Vāranāsī, 1979, p 257-259.
11. S. Balachandra Rao, Indian Mathematics and Astronomy -Some Landmarks (Rev. $3^{\text {rd }}$ Ed.) Bhavan's Gandhi Centre of Science \& Human Values, Bangalore, 2005, p 129-131.
12. The Pratibhāḡ̄ ms. copy obtained for O.R.J., Mysore, p. 5.
13. The Tyāgarti manuscript was procured by the present authors through Dr, Jagadish of Shimoga.
14. S. Balachandra Rao, Ancient Indian Astronomy Planetary Positions and Eclipses, B.R.Publishing Corp., Delhi, 2000, p 172.
15. S. Balachandra Rao and Padmaja Venugopal, Transits and Occultations in Indian Astronomy, Bhavan's Gandhi Centre of Science \& Human Values, Bangalore, 2009.
16. 'An Analysis of the Mandaphala Tables of Makaranda and Remsion of Parameters' (by the same authors) to appear in Gaṇita Bharatī.

Bibliography

A.K. Bag, Mathematics in Ancient and Medieval India, Chowkamba Orientalia, Vāraṇāsī, 1979.
S. Balachandra Rao, Ancient Indian Astronomy - Planetary Positions and Eclipses, B.R. Publishing Corp., Delhi, 2000.
S. Balachandra Rao, Indian Mathematics and Astronomy Some Landmarks (Rev. $3^{\text {rd }}$ Ed.) Bhavan's Gandhi Centre of Science \& Human Values, Bangalore, 2005.
S. Balachandra Rao and Padmaja Venugopal, Transits and Occultation's in Indian Astronomy, Bhavan's Gandhi Centre of Science \& Human Values, Bangalore, 2009.

Grahalāghavaṃ of Gaṇeśa Daivajña, S. Balachandra Rao and S.K. Uma ,Eng. Exposition, Math. Notes etc., IJHS, 41.1-4(2006), INSA, New Delhi, 2006.

Jyotīrmimāṃsā of Nīlakanṭha Somayāji, Ed. K.V. Sarma, V.V.B. Inst. of Skt. \& Indological Studies, Hoshiarpur, 1977.

Karaṇakutūhalam of Bhāskara II,of Bhāskara II, S. Balachandra Rao and S.K. Uma, an Eng. Tr. with Notes and Appendices, IJHS, 42.1-2 (2007), 43.1 \& 3 (2008) INSA, New Delhi.

Sodāharaṇa Makaranda sāriṇī with Viśvanātha Daivajña com. udāharaṇam, Śrī Venkateśvara Press, Bombay, 1913.

[^0]: *Associate Professor, Dept. of Mathematics, Global Academy of Technology, Rajarajeshwari Nagar, Bangalore-560098, India.
 **Professor and Head, Dept. of Mathematics, SJB Institute of Technology, Kengeri, Bangalore-560 060, India.
 ***Hon. Director, Gandhi Centre of Science and Human Values, Bharatiya Vidya Bhavan, \#43/1, Race Course Road, Bangalore560 001, India, Email:balachandra1944@gmail.com

